Mass spectroscopy - ionization methods

b) proton transfer

Mass spectroscopy - ionization methods

4. Glow discharge source

5. Photoionization

Mass spectroscopy

Most elements occur naturally as a mixture of isotopes.

- The presence of significant amounts of heavier isotopes leads to small peaks that have masses that are higher than the parent ion peak.
- M+1 = a peak that is one mass unit higher than M⁺
- M+2 = a peak that is two mass units higher than M⁺

Quadrupole Mass Filter

Mathieu's equations

$$\frac{d^2 x}{dt^2} = -\left(\frac{e}{m}\right) \frac{\left[U + V\cos(\omega t)\right]}{r_0^2} x,$$
$$\frac{d^2 y}{dt^2} = \left(\frac{e}{m}\right) \frac{\left[U + V\cos(\omega t)\right]}{r_0^2} y,$$
$$\frac{d^2 z}{dt^2} = 0.$$

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} + (a_u - 2q_u \cos 2\xi) u = 0$$
$$a_u = a_x = -a_y = \frac{8zeU}{m\omega^2 r_0^2}$$
$$q_u = q_x = -q_y = \frac{4zeV}{m\omega^2 r_0^2}$$

Penning trap mass spectrometry

Penning trap mass spectrometry

Penning trap mass spectrometry

Electron/proton g-factor measurements

 $Cs(6s,F)+Cs(6s,F)+hv_L \rightarrow Cs_2^* (\Omega(6s+6p_j);v,J)$

Obtaining spectroscopic signal

Obtaining spectroscopic signal

Obtaining spectroscopic signal

FIG. 2. Dark states in a Fermi gas at 0 G. The atom number is plotted versus the detuning of the probe frequency from the twophoton resonance, where the photon energy difference $h(\nu_2 - \nu_1)$ equals the difference between the energy of the initial free atom state and a bound molecular level and the atom number exhibits a maximum revival. (a)–(c) Corresponding different molecular hyperfine levels (F'' = 2, 1, 0) of the v'' = 9, N'' = 0 level in the $a(1^3\Sigma_u^+)$ potential. We were not able to find parameters that would improve the revival of F'' = 1 to above 50%. Spectrum (d) corresponds to the v'' = 38, N'' = I'' = F'' = 0 level of the $X(1^1\Sigma_q^+)$ potential.

Feshbach spectroscopy

Feshbach resonance

Feshbach spectroscopy

Feshbach spectroscopy

Binding energy measurements

Quantum jump spectroscopy

W.M. Itano, J.C. Bergquist, and D.J. Wineland, Science 37, 612 (1987)

Quantum logic spectroscopy

Quantum logic spectroscopy

