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Summary

This thesis focuses on simulating and numerically optimiz-
ing the laser cooling and trapping processes for cesium, potas-
sium, and silver atoms. The process begins with the release
of atoms from a dispenser source in the case of cesium and
potassium, or from a dispenser-like oven for silver. The sim-
ulations aim to estimate the performance of magneto-optical
trapping in a two-dimensional trap, followed by loading of a
three-dimensional magneto-optical trap for each considered
atom type. The main objective of these simulations is to ver-
ify the initial assumptions that have been made during the
design of a new experimental apparatus aiming at the study
of ultracold KAg and CsAg molecules. Importantly, the con-
cept of a two-dimensional magneto-optical trap for silver re-
mains unexplored in existing literature, thus simulations are
essential to assess its capability in providing precooled sil-
ver atoms to load a three-dimensional magneto-optical trap.
These simulations enable the analysis of trapping rates, cap-
ture velocities, atomic flux, and velocity distributions.

To validate the model, we conducted simulations based on
well-known experimental setups developed by other research
groups. To illustrate the simulation’s adaptability, each sce-
nario involved a unique configuration of experimental param-
eters for atoms of interest, specifically K, Cs, and Ag. The
program produced values that reproduced published results
very well.

The simulation models the time-dependent motion of atoms
under the influence of laser light and magnetic field. It uti-
lizes a modified version of the AtomECS Rust package, which
incorporates the attributes of these fields to compute atomic
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trajectories, a Python script for evaluating atomic motion,
and a Matlab procedure that executes Bayesian optimiza-
tion and data visualization. Moreover, the thesis elaborates
on the fundamental theory of atom-light interactions, atomic
sources, and population statistics within a magneto-optical
trap. It discusses various methodologies for assessing the
trapping rate in such traps. Lastly, the thesis suggests poten-
tial enhancements to the software to improve optimization,
make it more user-friendly, and permit the concurrent simu-
lation of traps with differing properties.
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Streszczenie

Niniejsza praca skupia się na symulacji i numerycznej opty-
malizacji procesu chłodzenia laserowego i pułapkowania atomów
cezu, potasu oraz srebra. Proces rozpoczyna się od uwol-
nienia atomów z dyspensera w przypadku cezu i potasu lub
z pieca przypominającego dyspenser w przypadku srebra.
Symulacje mają na celu oszacowanie wydajności pułapkowa-
nia w dwuwymiarowej pułapce magneto-optycznej, a następ-
nie wypełnienia atomami trójwymiarowej pułapki magneto-
optycznej dla każdego z rozważanych typów atomów. Głównym
celem tych symulacji jest weryfikacja założeń początkowych
przyjętych podczas projektowania nowego układu ekspery-
mentalnego, mającego na celu badanie ultrazimnych cząsteczek
KAg i CsAg. Co istotne, koncepcja dwuwymiarowej pułapki
magneto-optycznej dla srebra nie była jak dotąd rozważana
w istniejącej literaturze, dlatego symulacje są kluczowe dla
oceny jej zdolności do dostarczania wstępnie schłodzonych
atomów srebra do wypełnienia atomami trójwymiarowej pułapki
magneto-optycznej. Symulacje te umożliwiają analizę szy-
bkości pułapkowania, prędkości przechwytywania, strumienia
atomowego oraz rozkładów prędkości.

W celu walidacji modelu przeprowadzono symulacje oparte
na dobrze znanych układach eksperymentalnych opracow-
anych przez inne grupy badawcze. Aby zilustrować elasty-
czność symulacji, każdy scenariusz uwzględniał unikalną kon-
figurację parametrów eksperymentalnych dla badanych atomów,
w szczególności K, Cs i Ag. Program wygenerował wartości,
które bardzo dobrze odtwarzały wyniki opublikowane w lit-
eraturze.

Symulacja modeluje zależny od czasu ruch atomów pod
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wpływem światła laserowego i pola magnetycznego. Wyko-
rzystuje zmodyfikowaną wersję pakietu AtomECS napisanego
w języku Rust, który uwzględnia właściwości tych pól do
obliczania trajektorii atomów, skrypt w Pythonie do oblicza-
nia ruchu atomów oraz procedurę w Matlabie do wykonywa-
nia optymalizacji bayesowskiej i wizualizacji danych.

Ponadto w pracy omówiono podstawową teorię interakcji
atom-światło, źródeł atomowych oraz statystyki populacji w
pułapce magneto-optycznej. Przedyskutowano również różne
metody oceny szybkości pułapkowania w takich układach.
Na koniec praca proponuje potencjalne ulepszenia oprogramowa-
nia w celu usprawnienia optymalizacji, zwiększenia przyjazności
dla użytkownika oraz umożliwienia równoczesnej symulacji
pułapek o różnych właściwościach.
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Introduction

Atoms constitute the fundamental building blocks of all matter. For centuries,
philosophers and physicists alike were fascinated by its underlying structure. Our
perception of what we are made of has evolved greatly over time. Already 500 years
BCE, Leucippus and Democritus considered the idea of existence of an indivisible
core of matter [1]. The term "atom" originates from the Greek word for "indivisi-
ble". Although Robert Boyle reintroduced the concept in the 17th century [2], it
was not until the 19th century that John Dalton proposed a contemporary atomic
model [3]. Up to that point, the atomic structure had not been experimentally
examined. The first to do so were J.J. Thomson [4] and Ernest Rutherford [5].
Thomson discovered the electron and Rutherford with his experiments proposed
the idea of electrons orbiting a dense nucleus. Until that time, atoms were more
or less seen as groups of solid spheres, which still maintained the ideas of the great
Greeks. This has changed with the works of Erwin Schrödinger [6] and Werner
Heisenberg [7]. They have proposed the wave-particle duality and the probabilistic
nature of atomic behaviour. Schrödinger stated his famous equation that describes
electron distributions through probability clouds. This wave-particle duality has
many consequences, one of which is the Bose-Einstein condensate (BEC). The-
oretically, it was proposed by Einstein [8] who used photon statistics developed
by Satyendra Bose [9] and applied to atoms. To create a BEC in a laboratory,
the atomic cloud had to be dense (of order 1013 atoms/cm3) and greatly cooled
(T < 1 µK). To do so, experimental physics had to develop groundbreaking tech-
niques starting with Doppler cooling in 1975 by T. W. Hänsch [10]. This allowed
a reduction in the velocity of the atoms and the achievement of temperatures in
the mK and even µK regime. Further enhancement was a magneto-optical trap
(MOT) which allowed us not only to cool but also to trap atoms and increase their
density [11]. Those advances led to the creation of the first BEC in 1995 by Eric
Cornell and Carl Wieman [12].

With an understanding of quantum mechanics, the need arises to simulate
those processes, but there is a significant problem. The quantum state of a system
is described by multiple variables which grow exponentially with the number of
particles or the degrees of freedom. A solution for this problem was hypothesized
by Richard Feynman in 1982 [13] and later developed by Lloyd [14] - a quantum
computer. It was to simulate a quantum system with an ensemble of well-defined
qubits that could be initialized, and measured, and on which universal quantum
gates could be performed. This would act as a universal quantum simulator.
A simpler version would be to reproduce the quantum system that we want to
understand with a system that we can measure directly [15], a problem-specific
quantum simulator. One of the ways to realize it is with polar molecules [16]. The
advantage of polar molecules is that their large electric dipole moments produce
strong dipole-dipole interactions that can be manipulated relatively easily via
external DC and AC microwave fields. Now the task is to create cooled down
polar molecules that will have strong dipole moments. It can be done by separately
cooling the component atoms and then combining them. In nature atoms, while
colliding, can temporarily combine when the energy of the collision is equal to
the bound-state energy (such energy corresponds to the Feshbach resonance [17]).
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Using an external electromagnetic field, the bound-state energy can be tuned to
match collision energy, which will create a weakly bound ultracold molecule. Now
the question stands, which molecules have the highest dipole moment?

Motivation

One of the promising platforms for creating a quantum simulator are ultracold
ground state molecules with a high electric dipole moment. Very strong candi-
dates are KAg and CsAg which have permanent electric dipole moments on the
order of 8.5 − 9.75 D [18]. When composed of two alkali metals, the electric
dipole moments are significantly smaller, reaching 5.5 D for LiCs [19]. However,
these molecules have not been produced yet under conditions suitable for modern
ultracold experiments.

In order to form KAg or CsAg molecules, we need to characterize the prop-
erties of K+Ag and Cs+Ag mixtures and establish a procedure of production of
these molecules in their ground states. To achieve that, we must simultaneously
laser cool silver and caesium or potassium. This requires an experimental setup,
which will provide a trapped cooled gas of each of these elements. We plan to
use two 2D magneto-optical traps as sources of pre-cooled atoms that will load a
3D magneto-optical trap. For caesium and potassium, 2D magneto-optical traps
for each species have been demonstrated by several groups [20, 21, 22, 23, 24]
and are commonly used. The technology is well-established but for a new design,
there are many variables that can influence the final outcome of any specific de-
sign. For example, solely increasing the size of the cooling beams decreases the
intensity but increases the capture range of atoms, and it is not straightforward
to answer if the desired outcome, for example an increase in the atom flux, will
be achieved. Numerical simulations help to address such concerns. A need for
simulations is even more important for laser cooling of silver, because there is no
literature reference for the operation of a 2D MOT for this species. The first and
only published result for a magneto-optical trap for silver comes from the group
of H. Walther [25]. They loaded a magneto-optical trap directly from hot sources
(effusion cell and a dispenser). A newer approach for trapping silver that uses a
Zeeman slower has been demonstrated recently by David DeMille’s group, which
also employs a silver MOT [26, 27]. A Zeeman slower requires the ability to send a
laser beam counter-propagating with the atomic beam, which requires an optical
access (e.g a window) on the opposite of the atomic source. A relatively high flux
of atoms from the Zeeman slower can easily coat the window with silver, reduc-
ing its transmission and quickly deteriorating the cooling performance. DeMille’s
group has addressed this by heating the window which complicates the setup and
introduces additional variables that make estimating the outcome even more chal-
lenging. An alternative solution is to use a 2D trap loaded by a small oven which
would provide pre-cooled atoms to load a 3D magneto-optical trap. The high
temperature (> 900 ◦C) required to evaporate silver atoms from a sample poses
challenges for this approach. So far, 2D traps with relatively high temperature
of the source have been demonstrated for Li [28], Sr [29], and Dy [30], but the
temperature for silver will be even higher. This presents a significant technical
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challenge, but if successful, it will greatly simplify the experimental setup, reduce
energy consumption, and minimise the physical size of the apparatus. With fewer
components to fail, a 2D trap is also advantageous for long-term use.

Constructing an experimental setup for laser cooling atoms takes a great deal
of time, energy, and equipment. Before this effort, it is worth verifying whether
assumptions based on experience have a chance of working. This is why the simu-
lation in the case of silver is even more crucial than in well-researched examples of
potassium or caesium sources. Moreover, it will allow us to optimize the system’s
parameters.

To create the simulation, we have used AtomECS software. It allows us to
simulate trajectories of atoms in a single magneto-optical trap. We have modified
the software, introducing changes that would allow for the simulation of multiple
traps in the same system. Moreover, we have created an analysis script that
obtained the velocity distribution of an atomic beam and, with the model of
different types of atomic sources, calculates the simulated flux. Additionally, we
have performed an optimization of the setup.

Thesis outline

Chapter 1: We start with an explanation of the basic theory that describes the
principles of magneto-optical trapping such as dipole force, selection rules, Doppler
and Zeeman effects, and optical molasses. We also introduce the theoretical limits
of this kind of cooling.
Chapter 2: The theory of atomic sources is provided. It explains how atoms can
be introduced into the system and how they will behave in a vacuum. We describe
the main types of sources used in atomic cooling, like effusion cells (in the ideal
and non-equilibrium cases) and background gas loading.
Chapter 3: We provide mathematical models describing the loss mechanisms for
the atomic beam. We discuss what is the reason for the decrease in flux between
the effusion cell and the MOT. Additionally, we will show loss mechanisms inside
the trap and different approaches for population statistics.
Chapter 4: We present the characteristics of potassium, silver, and caesium that
are relevant to the simulation. We explain the basics of simulating magneto-optical
traps. We describe different approaches to simulation, and with an exemplary
script we show how our program is built.
Chapter 5: We describe the experimental configurations implemented by other
research groups to introduce benchmarks for our simulations. The simulation of
these experiments is compared with real data extracted from references in the lit-
erature, providing a verification that the developed program returns trustworthy
results.
Chapter 6: We describe a novel experimental setup constructed in our group
which will be used for creating ultracold cold CsAg KAg molecules, and present
optimized parameters with the estimated flux, capture velocity, and trapping ef-
ficiency that we compare to the results of other setups.
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1 Light-matter interaction principles for MOT

Simulating a physical phenomenon must be entirely based on the established laws
that describe it. Additionally, it requires us to present our understanding clearly
and transparently, highlighting our assumptions. This chapter outlines the theory
of how atoms interact with light and how this interaction can be utilised for
cooling. It then explains the theory of how magnetic fields influence the atomic
energy structure and their application in trapping atoms.

1.1 The steady state solutions for an atom at rest

Let’s consider an atom as a quantum object. It is determined by its Hamil-
tonian H0, which has eigenstates of eigenfunctions Φn and energies En = ℏωn

following the connection EnΦn = H0Φn. Inserting the atom in a laser light adds
a time-dependent term H ′(t). It leads to the mixing of the stationary eigenstates
and so the atom’s wavefunction should be written as

Ψ(t) =
∑

n

cn(t)Φne−iωnt, (1.1)

where |cn(t)|2 is the occupation probability of each state describing the atom’s
behaviour. To calculate them we substitute 1.1 to the time-dependant Schrödinger’s
equation

HΨ(t) = iℏ
∂

∂t
Ψ(t), (1.2)

where H = H0+H ′(t). After differentiating with respect to time and expanding
the Hamiltonian, we obtain

ℏωn

∑
n

cn(t)Φne−iωnt + H ′(t)
∑

n

cn(t)Φne−iωnt =

iℏ
∑

n

ċn(t)Φne−iωnt + ℏωn

∑
n

cn(t)Φne−iωnt,
(1.3)

where we also used the connection between the energy and H0. The two terms
with ℏωn cancel each other out. The next step is to multiply by Φj and sum over
all eigenstates. For the sum of ċn(t) the only non-zero term is for n = j, since
the eigenstates are orthogonal. The interaction Hamiltonian H ′(t) becomes H ′

jn ≡
⟨Φj| H ′(t) |Φn⟩. The final equation for transformed time-dependant Schrödinger’s
equation is

ċj(t) = 1
iℏ
∑

n

cn(t)H ′
jn(t)eiωjnt, (1.4)
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where ωjn ≡ ωj − ωn. In the above equation, the remaining unknown is the
interaction Hamiltonian. To calculate it further we need to describe the system
more accurately. Our atom is a two-level system and we take on a semi-classical
approach that quantises the atom’s structure and assumes light’s wave nature. We
start with describing a Hamiltonian of an atom:

H(t) = 1
2m

(p⃗ + eA⃗)2 + V, (1.5)

where p⃗ is the momentum of the electron in the atom, m is its mass, e is its
charge, and A⃗ is the vector potential of the magnetic field.

We choose the Coulomb gauge where the ∇⃗A⃗ = 0. From the definition of
momentum ∇⃗ = 1/iℏ · p⃗, and so A⃗ and p⃗ commute. We obtain

H(t) = 1
2m

(p⃗2 + 2A⃗ · p⃗ + A⃗2) + V. (1.6)

We can now compare the amplitudes of the field and the atom momenta by
taking their ratio. We substitute |A⃗| = 1/ω·|E⃗|, which comes from the relation E⃗ =
−∂A⃗

∂t
. For the comparison, we take a ground state hydrogen whose electron’s

momentum is |p⃗| = ℏ/a0. This leads to

|eA⃗|
|p⃗|

= e|E⃗a0|
ℏω

≈ 7 · 10−8, (1.7)

where a0 is the Bohr’s radius. In order to approximate the amplitude of the
electric field we took the parameters of a typical laser beam used for trapping
atoms, with λ = 500 nm, beam radius of 10 mm, and power of 100 mW. This
comparison shows that |eA⃗| is much smaller than the electron’s momentum so we
can set the term A⃗2 as 0 leaving only

H(t) = p⃗2

2m
+ V + eA⃗ · p⃗

m
= H0 + H ′(t). (1.8)

This sets the interaction Hamiltonian to be H ′(t) = eA⃗ · p⃗/m. The vector
potential can be written as

A⃗(t) = 1
2A0 exp

[
i(k⃗ · r⃗ − ωt + ϕ)

]
+ c.c, (1.9)

where ϕ is an arbitrary phase. We want now to simplify it by making the
vector potential position independent using the rotating wave approximation. For
that let’s expand the exponent according to Taylor’s series: exp (ik · r) = 1 + i⃗k ·
r⃗ + O

(
k⃗ · r⃗

)2
and consider how the potential changes throughout the range of the

electron’s movement. Argument r would have the order of an Angstrom - 10−10
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and so the product |⃗k · r⃗| = 2a0
λ

≈ 0.0005 for visible light at λ = 500 nm. This
allows us to treat the expanded exponent as unity. It is called electric dipole
approximation (EDA). It makes the vector potential constant for the area of an
atom giving

A⃗ = A0 cos(ωt + ϕ)ε̂. (1.10)

We can calculate the interaction Hamiltonian between the ground and the
excited state as

H ′
eg(t) = ⟨e| H ′(t) |g⟩ = e

m
⟨e| A⃗(t) · p⃗ |g⟩ ≈ A0 cos(ωt + ϕ)ε̂ · ⟨e| p⃗ |g⟩ . (1.11)

Momentum can be determined using the Heisenberg equation of motion giving:

H ′
eg(t) = A0 cos(ωt + ϕ)ε̂ · ⟨e| im

ℏ
[H0, r⃗] |g⟩ . (1.12)

We perform simple calculations from the definition of the commutator and
obtain eigenvalues of the state

ie

ℏ
⟨e| [H0, r⃗] |g⟩ = ie

ℏ
⟨e| (H0 · r⃗ − r⃗ · H0) |g⟩ = ie

ℏ
(Ee ⟨e| r⃗ |g⟩ − Eg ⟨e| r⃗ |g⟩)

= −i(ωe − ωg) · ⟨e| − er⃗ |g⟩ .
(1.13)

The last term in this equation is the matrix element of the dipole operator µ⃗ =
−er⃗. Applying it in the formula and inserting 1.13 to 1.12 gives us

H ′
eg(t) = −iωegA0 cos(ωt + ϕ)ε̂ · µ⃗eg, (1.14)

where we determine ϕ = −π/2 so that iωegA0 cos(ωt − π/2) = −∂A⃗
∂t

which
is the electric field E⃗(t) = E0 cos(ωt) based on Maxwell equations. Lastly, we
introduce Rabi frequency defined as Ωeg ≡ E0ε̂ · µ⃗eg/ℏ, which gives us the final
expression as

H ′
eg(t) = ℏΩeg cos(ωt). (1.15)

We introduce it to 1.4 obtaining

iℏ
dcg(t)

dt
= ce(t)

ℏ
2Ωeg(eiωt + e−iωt)e−iωegt

iℏ
dce(t)

dt
= cg(t)ℏ2Ωge(eiωt + e−iωt)eiωegt.

(1.16)
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Both expressions have only one term since H ′
gg(t) = H ′

ee(t) = 0. In the above
equations, terms like exp (−i(ω + ωeg)t), with the sum of the frequencies, we can
treat as 0 since they oscillate quickly and average out. This is called the ro-
tating wave approximation (RWA). The remaining terms we can describe with
detuning δ ≡ ω − ωeg, which represents how far the light’s energy is from the
transition’s. To ease calculations, we perform the rotating frame transformation
where c̃e(t) ≡ ce(t)eiδt replaces ce(t). This gives

dcg(t)
dt

= −i
Ω∗

2 c̃e(t)

dc̃e(t)
dt

= −i
Ω
2 cg(t) + iδc̃e(t).

(1.17)

1.1.1 The density matrix approach

After calculating the differential equations for coefficients cn(t) we will use the
density matrix formalism to extract measurable information about the system,
for example, the force acting on the atom. The density matrix is represented
by ρ = |Ψ⟩ ⟨Ψ|, where each element is ρij = cic

∗
j . The diagonal terms describe

the probability for an atom to be in a specific state and off-diagonal parts are
coherences, which depend on the phase between two states. The expectation
value of an operator A using the density matrix can be defined as:

⟨A⟩ = Tr(ρA). (1.18)

The next step is to calculate differential equations for elements of the density
matrix using 1.17. Before it we have to include one additional term. The semi-
classical approach does not predict spontaneous emission so it has to be added
according to the Wigner-Weisskopf model, where the new term is

dcespt(t)
dt

= −γ

2 cespt(t), (1.19)

where γ = ω3e2a2
0/3πε0ℏc3. It represents a loss in the excited state due to

the spontaneous emission. Since the ground state is vastly populated compared
with the change due to the spontaneous emission we can think of it as constant
so dcgspt (t)

dt
= 0. From the definition of ρij, and equations 1.17 and 1.19 we can

derive the optical Bloch equations (OBE) for the resting atom

10



dρgg

dt
= γρee + i

2 (Ωρ̃ge − Ω∗ρ̃eg)
dρee

dt
= −γρee + i

2 (Ω∗ρ̃eg − Ωρ̃ge)
dρ̃ge

dt
= −

(
γ

2 + iδ
)

ρ̃ge + i

2Ω∗ (ρgg − ρee)

dρ̃eg

dt
= −

(
γ

2 − iδ
)

ρ̃eg + i

2Ω (ρee − ρgg) .

(1.20)

When we equal them to 0 and solve them we will achieve the steady-state
solutions. Using connections like: the conservation of the population ρee +ρgg = 1,
the optical coherence ρeg = ρ∗

ge, and introducing a new variable, w ≡ ρee − ρgg,
the population difference, we obtain the solution

ρeg = −iΩ
2(γ

2 − iδ)(1 + s) (1.21)

w = −1
1 + s

, (1.22)

from which one can extract all the other terms of the density matrix. Variable s
is the saturation parameter defined as

s ≡ |Ω|2

2|γ
2 − iδ|2

. (1.23)

In semi-classical formalism, force is treated as an operator ⟨F⟩ = d
dt

⟨p⃗⟩ . The
expectation value for a time-independent operator is described by the Ehrenfest
theorem

d

dt
⟨p⃗⟩ = i

ℏ
⟨[H; p⃗]⟩ = −

〈
∂H

∂z

〉
. (1.24)

The only direct spatial term lies in the interaction Hamiltonian. We derive its
matrix form using 1.17

H ′ = ℏ
[

iδ −iΩ
2

−iΩ∗

2 0

]
. (1.25)

When we insert it into 1.21 and use the definition of the expectation value in
the density matrix formalism we obtain

⟨F⟩ = − ∂

∂z
Tr (ρH ′) = − ∂

∂z
(−2δρee + ρegΩ∗ + Ωρge) = −ℏ

2

(
∂Ω∗

∂z
ρeg + ∂Ω

∂z
ρge

)
.

(1.26)
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It is a general equation for force for any set of steady-state OBE. Additionally,
the derivative can be split into the real and imaginary parts as ∂Ω

∂z
= (qr + iqi)Ω.

The derivative can be written as a multiplication with a constant since the full
dependence on z is enveloped in an exponent. The final equation for the force is

F = ℏqr(Ωρ∗
eg + Ω∗ρeg) + ℏqi(Ωρ∗

eg + Ω∗ρeg). (1.27)

1.2 Moving atom in a standing wave

To pursue calculations we need to dive deeper into our system, which is a neutral
atom moving in a standing wave. A standing wave is seen as two plane waves of
the same amplitude and opposite directions interfering with each other. Setting
the electric field as E(z, t) = E0 exp (i(kz − ωt)) we can describe the standing wave
as

Est(z, t) = E0
(
ei(kz−ωt) + ei(−kz−ωt)

)
= 2E0 cos(kz)e−iωt, (1.28)

where we used the exponent representation of a cosine. We can understand
that term E0(z) = 2E0 cos(kz) is a position dependent amplitude. Since the term
expressing coupling between the electric field and the atom depends on the am-
plitude of the electric field it will be Ω(z) = 2/ℏ ·E0 cos(kz)ε̂0µ⃗eg. Then the terms
of the derivative will be qi = 0 and qr = −k tan(kz). Substituting them to 1.27
provides

F = −kℏ tan(kz)qr(Ωρ∗
eg + Ω∗ρeg). (1.29)

After introducing the idea of a standing wave into the calculation we need
to introduce the notion of atom’s movement. For that, we add a small velocity-
dependent perturbation, which will provide corrections to the already shown so-
lutions. The Rabi frequency and ρeg will be

dΩ
dt

= v
∂Ω
∂z

= ∂Ω
∂t

− vk tan(kz)Ω
dρeg

dt
= ∂ρeg

∂t
+ v

∂ρeg

∂z
= ikvΩ

2(γ
2 − iδ)(1 + s)

[
tan(kz)

(1 − s

1 + s

)]
.

(1.30)

The derivative over time equals 0 since it’s a perturbation of a steady-state so-
lution whose results are not explicitly time-dependent. After solving the derivative
equations and substituting them into 1.29 we obtain an updated velocity equation
for the force exerted on the atom

F = ℏk
s0δγ2

2(δ2 + γ2

4 )

sin(2kz) + kv
γ

δ2 + γ2

4

(1 − cos(2kz))
 , (1.31)
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where s0 is the saturation parameter for both beams in the standing wave. It’s
equal to the s when detuning is 0. In the force, two periodical terms average out
in space. The velocity-dependant term becomes

Fav = −βv⃗ = ℏk2v
8s0δ

γ(1 + s0 + (2δ
γ

)2)2 . (1.32)

Saturation parameter s0 in the denominator could be left out [31] since it is
a case of low intensities (I ≪ Isat). We have decided to show this version so
that it will be compatible with results obtained through other approaches. The
presented force in the case of negative detuning δ < 0 is equivalent to a damping
force responsible for cooling down atoms.

1.3 Selection rules

The dipole operator is the last term that has to be evaluated to see how the
force on the atom depends on the field. It describes the coupling between two
states in the electric dipole approximation. It depends on the wave function of
the two states in the transition. Approximation to a two-level system does not
facilitate the calculation since the states have to be studied closer and we need
to calculate it explicitly. Still, the dipole operator yields zero for some specific
parameters of the electric field and the states. Set of such combinations is called
the selection rules. In order to explore them we need to express the functions
explicitly using the well-known solutions for the hydrogen atom represented by
the spherical harmonics Ylm(θ, ϕ) and Laguerre polynomials inside the radial part
of the solution Rnl(r)

|g⟩ = Rnl(r)Ylm(θ, ϕ)
|e⟩ = Rn′l′(r)Yl′m′(θ, ϕ).

(1.33)

Variables n, l and m are quantum numbers, where n is the principal quantum
number describing the overall energy of the electron, and l is the orbital quantum
number determining the orbital momentum. Its orientation is represented by
the magnetic quantum number m. We pick the basis vectors of the polarisation
vector ε̂ as

ε̂−1 = x̂ − iŷ√
2

ε̂0 = ẑ ε̂+1 = − x̂ + iŷ√
2

. (1.34)

They are normalised and mutually orthogonal and we understand them as left-
handed circular polarisation σ−1, right-handed σ+1, and a linear polarisation π.
Since the wavefunctions are described in the spherical coordinates, where

13



x = ρ cos ϕ sin θ

y = ρ sin ϕ sin θ

z = ρ cos ϕ,

(1.35)

we should do the same for ε̂. After substituting 1.35 into 1.34 we see that they
can be equally expressed as ε̂q =

√
4π
3 Y1q(θ, ϕ), where q = −1, 0, +1. Ultimately

the matrix elements of the dipole operator become

µ⃗eg = ⟨e| ε̂q · µ⃗ |g⟩ = −e ⟨e| ε̂q · r⃗ |g⟩ =

−e ⟨Rn′l′(r)| |r| |Rnl(r)⟩ ⟨Yl′m′ |
√

4π

3 Y1q(θ, ϕ) |Ylm⟩ .

Let’s focus only on the angular term that we will call Aq
l′m′,lm. To see if any

combinations of q, l, m will cancel the term we can introduce Wigner 3-j symbol-
ism [32]:

A
q
l′m′,lm = (−1)(l′ − m′)

√
max(l, l′)

(
l′ 1 l

−m′ q m

)
. (1.36)

Due to the symmetry of the 3j-symbols, this form can be different from zero
only when the sum of the bottom terms equals zero. This can be interpreted as
the total projection of angular momentum (m′ + q + m) must remain invariant
under rotations which is the angular momentum conservation law. This is one of
the selection rules. It states ∆m = 0, ±1. As a result, the right-handed circularly
polarised light ρ+ will excite an electron to a state which differs in the magnetic
quantum number by +1 and the opposite will happen for the left-handed circularly
polarised light ρ−.

1.4 Influence of the magnetic field on the atom

The provided selection rule suggests that circularly polarised light can selectively
excite transitions depending on their magnetic quantum number. Let’s now inves-
tigate how such states can be created and what is their frequency. We will explain
the Zeeman effect. To describe the Hamiltonian of the system we have to start
from the beginning going back to the equation 1.6. The vector potential of the
magnetic field will be given by A⃗ = 1

2(B⃗ × r⃗). Substituting it gives us

HZO = e

2m
B⃗ · (r⃗ × p⃗) + e2

8m
|(B × r⃗)|2. (1.37)

We can substitute into the equation orbital angular momentum l⃗ ≡ r⃗ × p⃗,
Bohr magneton µB ≡ eℏ/2m and discard the quadratic element since the shifts of
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energies due to the considered external magnetic field are much smaller than the
unshifted energies. This provides a form

HZO = 1
ℏ

glµB l⃗ · B⃗. (1.38)

We add the Landé g-factor, an experimentally established constant which for
the orbital case is approximately 1. This is the change due to the orbital magnetic
moment. It comes from the current associated with electron’s movement around
the nucleus.

Moreover, the electron has an intrinsic magnetic moment

µ⃗e = −1
ℏ

geµB s⃗, (1.39)

where ge ≈ 2 and s⃗ is the spin of an electron. Spin represents the angular
moment of the electron. Both spin and the angular moment do not convey literal
physical meaning since the electron is a point particle and does not rotate around
an axis. They are terms used to describe its magnetic moment. This interaction
between the external magnetic field and the intrinsic magnetic moment provides
additional changes to the Hamiltonian. They can be calculated similarly to the
orbital magnetic momentum

HZS = 1
ℏ

geµB s⃗ · B⃗. (1.40)
.

The final factor influencing the energy structure of an atom is the spin-orbit
interaction. It arises from the fact that an electron with a magnetic moment moves
in the electric field of the nucleus from which a magnetic field is created B⃗n =
−1/c2 · (v⃗ × E⃗n). This field interacts with the intrinsic magnetic moment giving a
shift of HSO = −µ⃗e · B⃗n. This term will be neglected in our calculations. We are
considering a regime where the external field is much stronger than the B⃗n. The
final Hamiltonian will be

H = H0 + µB

ℏ
(⃗l · B⃗ + 2s⃗ · B⃗). (1.41)

The frequency shift between each state resulting from the Zeeman effect will
be ωZ = µB

ℏ B.

1.5 Magneto-optical trap

A one-dimensional magneto-optical trap (MOT) is a standing wave created by
two counter-propagating laser beams with opposite circular polarisation, detuned
by δ, with an external magnetic field that is linearly dependent. In a MOT we
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have a damping force that slows down atoms independent of their initial velocity
as stated by 1.42. It is responsible for cooling.

Figure 1: Scheme of energy levels as a function of position for a 1D magneto-
optical trap. The detuning δ, δ−, and δ+ denote the energy differences between
the laser and the respective atomic levels Me = −1, Me = 0, and Me = 1. The
position z′ represents an example location of an atom. The variable ωl is the laser
frequency, corresponding to the energy of its photons. Adopted from [31].

Based on Fig. 1 we can see what happens to the atom when it is in the trap.
In the whole area of the trap, the atom is slowed down by the damping force. At
position z′ beam ρ− couples ground state only with Me = −1 due to the discussed
selection rule and beam ρ+ couples Mg = 0 only with Me = +1. Since for the
position z′ magnetic field is positive the state Me = −1 is closer to the excitation
wavelength, represented by δ−, than the state Me = +1. This makes it more
probable that the atom will be affected by the photon from the beam ρ− which
will push the atom in the direction of the centre of the magnetic field. This results
in trapping. To derive this trapping force we can approximate the frequency shift
by ωZ ≈ µB

ℏ ∇B⃗ · r⃗ because the magnetic field is 0 for r⃗ = 0. This shift can be
introduced into the equation of force by a change in the detuning δ −→ δ−µB

ℏ |∇B⃗·r⃗|.
We have set the sign to a minus since for every position the effective Zeeman shift
will be negative. Velocity-dependant force can also be regarded as the result of a
detuning shift due to the relativistic Doppler effect. In the variable β we substitute
the part of the Doppler shift |⃗k · r⃗| with the Zeeman shift µB

ℏ |∇B⃗ · r⃗| resulting in
a position-dependent trapping force. Two of them added together give the final
force experienced by an atom in the magneto-optical trap

F = −βv⃗ − β

k

µB

ℏ
|∇B⃗ · r⃗|. (1.42)

It is the form of a damped harmonic oscillator, where the damping coefficient
is β and the spring constant is κ = µB/ℏk · β∇B. Presented 1D MOT can be
easily extended to a 3D case with 3 pairs of circularly polarised beams.
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(a) Two dimensional MOT. (b) Three dimensional MOT.

Figure 2: Visualisation of different MOT schemes. Adopted from [33].

1.6 The rate equation model

We presented the forces acting on the atom. We would like to provide a simplified
model that allows easy calculation of the force. We treat the atom, as before, as a
classical, two-level system with the energy difference between two states being ℏω0.
It interacts with the laser by absorbing the photon from an incident laser beam.
When it absorbs gains a momentum kick ℏk⃗. This occurs at the photon scattering
rate [34]

R = I(r⃗)
Isat

Γ
2

1
4Γ2

δ(r⃗, v⃗)2 + 1
4Γ2 , (1.43)

where Γ is the natural linewidth, and the Zeeman and Doppler effects are
represented by the position and velocity dependence of the detuning. It can be
used to calculate density matrix elements, where the population densities of both
states are

˙ρee = −ρeeA21 −
(∑

i

Ri

)
(ρee − ρgg) (1.44)

˙ρgg = ρeeA21 +
(∑

i

Ri

)
(ρee − ρgg), (1.45)

where A21 is the Einstein coefficient for decay from the upper level and, for a
two-level system, is equal to the natural linewidth Γ, and ∑

i is a sum over each
laser. They give steady-state solutions when t −→ ∞
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ρee =
∑

i Ri

Γ + 2∑i Ri

(1.46)

ρgg = 1 − ρee. (1.47)

The average number of photons scattered in time step ∆t by each laser is equal

Ni = Ri∑
i Ri

∆tρeeΓ. (1.48)

Then the force from the absorption of the atom becomes

FA,i = ℏk⃗ini

∆t
, (1.49)

where ni is the number of photons scattered based on the Poissonian distri-
bution of an average value Ni. Additionally, the spontaneous emission causes a
random walk in the momentum space so a force arises

FE,i =
ni∑
j

ℏ|⃗ki|
∆t

e⃗j, (1.50)

where e⃗j is a random unit vector of the emitted photon.

1.7 Limit of laser cooling

A laser beam interacts with an atom when a photon is absorbed by it. Then the
atom gains the photon’s momentum through fully inelastic collision and after the
state’s lifetime, the atom emits the photon back in a random direction. Since it
is a random spontaneous emission, on average, it doesn’t transfer any momentum
but results in a random shift of velocity. Analogically, it is in the case of Brownian
motion but it happens for the position of a particle not for its momentum. This
shift is responsible for a non-zero mean square velocity.

We can calculate this steady-state temperature by assuming that the atom is
a particle moving in a viscous media where the momentum step is ∆p = ℏk and
its rate is ∆t = 2γp, two times the scattering rate of a single beam

γp = s0γ

2(1 + s0 + (2δ
γ

)2)
(1.51)

.

The diffusion coefficient will be [35]
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D0 ≡ 2(∆p)2

∆t
= 4γp(ℏk)2 (1.52)

.

We can set the damping coefficient as β and using Einstein’s equation for
Brownian motion calculate the Doppler temperature limit for cooling in an optical
molasses

Tlim = D0

kBβ
= 4γp(ℏk)2

kBβ
, (1.53)

which for Caesium 133 atoms would be around 125nK [36].

2 Physics of an atomic source

In considering a magneto-optical trap it is vital to understand different sources of
atoms that will replenish the atomic cloud. This chapter will provide an introduc-
tion to different types of sources and also the theory that will allow us to simulate
the atomic beam on their output. We will only focus on the direct emitters ex-
cluding Zeeman slower [37]. As a disclaimer, we would like to note the differences
between intensity and flux as flux in atomic physics is defined differently than
in, for example, fluid dynamics. Flux Φ is understood as the number of atoms
crossing a plane in a unit of time [atoms/s] and the intensity I of the beam is
number of atoms crossing area per unit of surface and time [atoms · s−1 · m−2].

2.1 Vapour pressure

The most basic source of atoms is background gas. When a material is set in a
vacuum in a closed box at temperature T , with time the atoms will evaporate
from the material to fill space and set an equilibrium throughout the whole box.
The pressure of the gas inside is the vapour pressure [38]

pv = p0 exp
−

1
kB

Hvap

T

, (2.1)

where p0 is an empirical constant specific to an element, and 1
kB

Hvap is the
latent heat of vaporisation. The relation can be also represented by a polynomial
equation [39]

log(p) = A + B · T −1 + C log T + D · T · 10−3, (2.2)

where letters from A to D are fitted constants.
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2.2 The ideal effusion cell

The effusion cell (Knudsen cell) is a liquid or vapour closed in a container with
a single hole, where the surface area of the liquid is much bigger than that of
the orifice. A beam exiting the output is a stream of collision-less atoms called a
molecular beam. The name refers to the molecular flow regime of atoms. To call
a source an ideal effusion cell it has to fulfil the following assumptions [40]:

1. material in the cell is in thermodynamic equilibrium;

2. the average path where the particle travels undisturbed (the mean free path)
is much bigger than the size of the pupil;

3. walls are much thinner than the pupil diameter;

4. pupil diameter is smaller than the distance to the receiving spot;

5. the pupil is flat.

Thermodynamic equilibrium means that atoms have a Maxwell-Boltzmann
velocity distribution and that the vapour pressure of thermodynamic equilibrium
is present throughout the cell. The assumption about the mean free path ensures
that atoms leave the cell without colliding with each other. Assumption 3 does
the same for collisions with the walls of the pupil. Assumption 4 ensures that
particles arrive as if from a single-point source for the receiving surface. Using
those notions we can assume that there is thermodynamic equilibrium between
the vapour and outer regions of the cell. In such a case, the number of collisions
of atoms with the walls of the cell can be used as a measure of the intensity of
the beam emitted from the cell. The kinetic theory describes it as impingement
rate [38]

I = p√
2πmkBT

, (2.3)

where p is the pressure of the gas, m is the mass of the atoms, and T is the
temperature. The distribution of the flux depending on the polar angle θ and
azimuthal angle ϕ is described by Knudsen’s cosine law for the beam’s intensity

ΦΩ(θ, ϕ) = Ia
cos θ

π
, (2.4)

where a is the small area of the pupil. Martin Knudsen proposed and proved
it in 1915 [40].
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(a) (b)

Figure 3: a) Scheme of an emitting Lambertian source with a plane that the
emitted atoms are deposited on. Adapted from [41]. b) Flux of an atomic beam
emitted by an ideal effusion cell dependant on radial position. Blue line - according
to theory [41], orange line - its Gaussian approximation.

Having the angular distribution of emitted atoms we can calculate the dis-
tribution of the atomic beam at a parallel to the pupil plane. For such a case,
angle Ψ on the scheme 3a is equal to θ. We express the cosine in terms of the
distance a from the source to the plane and the position r

cos θ = a√
a2 + r2

. (2.5)

From Knudsen’s cosine law 2.4 we can get the flux per area

I(r) = ∂ΦΩ

∂A
= aI

π
cos θ cos Ψ. (2.6)

The area is given by the projection of the elemental area ρ2dω onto the sub-
strate at an angle of Ψ. Since θ = Ψ we can substitute to the above equation
formulation 2.5 which gives us

Φ (r) = aI(
1 +

(
r
a

)2
)2 . (2.7)

This equation is represented in Fig. 3b. It is often approximated using a
Gaussian distribution also represented for comparison.
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2.3 The nonequilibrium case

Not for every case ideal effusion cell can be applied. The assumptions we have
stated are often not fulfilled which causes the impingement rate to be lower than
in the ideal case. The described deviations are: the thickness of the pupil, the
long distance between the evaporative material and the output, and the chance
for a particle to evaporate from the material is below 1. To describe it we can
apply the correction factor η, where

η = Ir

IΩ
. (2.8)

We can see the problem of the atomic beam passing through a pipe as electrons
pass through a cable. Then the terms flow intensity, conductance and resistance
are more familiar. Pressure difference resembles voltage. Similarly, a parallel of
Ohm’s law applies which in the atomic beam case can be represented as

I = C · ∆p, (2.9)

where C is the conductance, the volume flow rate of a liquid through a vessel.
We see that the correction factor η can be described by the conductance in the ideal
configuration C0 divided by the conductance in the real case Cr. Conductance for
the molecular flow regime (assumption 2) is calculated as

C0 = 1
4av̄, (2.10)

where v̄ is the mean velocity. Let us now estimate the conductance for the real
case. It will have three components. The first component represents that atoms
are not always emitted from the material to the body’s cell. It is regarded as the
flow resistance between the liquid-vapour interface. It can be directly set by C0
divided by the evaporation coefficient, an experimental constant. When atoms
propagate through the effusion cell’s tubed body, they can hit the walls and get
attached to them. Conductance of pipes is estimated by the Clausing factor [42].
Clausing’s theory proposes two regimes, of a short and long tube. We can call
it short when its length lp is smaller than 1.5 rp, where rp stands for the tube’s
cross-section radius. Then we can set the Clausing factor as

Cpupil = C0

1 + lp
2rp

, (2.11)

where rp is the radius of the orifice. This is applied to the loss at the pupil. The
cell’s body is regarded as a long tube of length lb where

Cbody = C08rb

3lb + 8rb
, (2.12)
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where rb is the body’s radius. The conductance of the whole effusion cell Cr

is calculated similarly to the conductance of serially connected wires

1
Cr

= 1
Cmaterial

+ 1
Cpupil

+ 1
Cbody

. (2.13)

Now combing the definition of η with 2.9 and the expression for component
conductances we obtain the correction factor as

η = 8αrbf

8a((1 + α)f + α) + α(3f + 4)lb
, (2.14)

where f is the ratio between the radius of the pupil and the radius of the
body . When we presume that one of the aspects is close to the ideal case we
remove it from the formula. This loss is only for the output beam intensity from
the effusion cell and does not affect its distribution. To give an example let us
imagine an effusion cell of body length lb = 1 cm, cross-section A = 2.0 cm,
pupil length lp = 0.01 cm, pupil’s cross-section a = 0.2 cm, and vaporisation
co-efficiency α = 0.9. The pupil conductance will be 0.96C0 and the body’s
conductance will be 0.97C0 both of them can be approximated to the ideal case.
The conductance between the material and the cell is described experimentally
for every material. For silver, it is around αAg = 0.9 [43] and it is temperature-
dependent. Since we can assume that the pupil and the body are close to an ideal
case so only the evaporation coefficient remains which becomes the correction
factor.

3 Behaviour of atoms in a MOT

This chapter presents a theoretical model of a 2D+3D MOT system, where atoms
from an oven are first cooled by a 2D MOT and then ejected by a push beam to be
trapped in a 3D MOT. T. G. Tiecke [28] introduced this model for lithium atoms.
It estimates the oven flux, capture and cooling processes, and loss mechanisms.
The model offers valuable insight into the inner workings of the setup, highlighting
dependencies on various parameters. We present this model not only to enhance
understanding of the MOT system but also as an alternative to simulations in
providing guidance for designing experiments and estimating the trapping rate in
the final trap. It is a semi-empirical model, which requires some of the elements
to be measured.

3.1 From an oven to the 2D MOT

The model begins with an effusion cell of a pupil with an area a. It is regarded as
an ideal case where the vapour pressure is expressed by 2.1. The intensity coming
from the effusion cell is expressed by 2.3. The flux of the beam in terms of atomic
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density ns = pv/kBT and mean velocity v̄ =
√

8kBT/πm is the atomic beam’s
intensity multiplied by the pupil area

Φtot = 1
4nsv̄ a. (3.1)

Atoms come directly to the 2D MOT from the pupil in the form of an atomic
beam. Atoms will be trapped only if they go through the capturing area Ac and
have a velocity below vc. To calculate the trapping rate of the beam we sum all
the atoms whose exit angle θ allows for going through the capture surface after
distance l, and whose velocity is in the capturing range. We assume that atoms
have Max-Boltzmann velocity distribution. This gives us a capture rate as

Lc = ans

∫ Ωc

0
dΩcos θ

4π

1
N

∫ vc

0
v3e−( 1

vmp
v)2

dv, (3.2)

where a is the abundance of the regarded atom in the sample, Ωc = Ac/l2 is the
solid angle of capture, vmp is the most probable atomic speed in the cell, and N =
1
4
√

πv3
mp is the normalisation factor of the speed distribution. For small angles,

we can approximate cosine as unity so that the angular part will be simply 1
4π

Ωc.
Assuming that the capture velocity is much slower than the most probable velocity
we can set the exponent to 1 giving an easy integral to solve. The maximal
theoretical capture rate is then

Lc ≈ 1
2ansA

(
vc

vmp

)2 Ωc

4π
= 1

2a

(
vc

vmp

)2

ΦΩ, (3.3)

where ΦΩ = Ωc

4π
Φtot is the flux of the beam emitted into Ωc. We have used the

relation v̄ =
√

4
π
vmp between the mean and most probable velocity.

The only unknown factor is the capture velocity. We can take the model
described in Chapter 1 to derivate it. We see the Zeeman trapping and Doppler
cooling effect on an atom as a damped harmonic oscillator. Then the cooling time
is τ ≈ β/κ. For an atom to be trapped the residence time has to be smaller than
the cooling time. The time that the atom spends in the trap is mostly dependent
on the speed in the 2D MOT-3D MOT axis, the direction in which there are no
cooling beams. We can approximate the capturing velocity by the velocity it takes
an atom to go to the trap in the cooling time

|vc| ≈ l

τ
. (3.4)

3.2 Travel and capturing in the 3D MOT

After exiting the 2D MOT, the atomic beam goes through a tube to the 3D MOT.
In this model, the pump beam is not considered. We can define the final loading
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rate by the theoretical maximum trapping rate and an efficiency χ

Lr = χLc. (3.5)

It encapsulates the efficiency of trapping both MOTs by themself and the trans-
fer efficiency χt between them. The transfer efficiency is related to the divergence
of the beam. As discussed in Chapter 2.2 we can approximate the distribution
at a position of the 3D MOT l3D by a Gaussian profile of a 1/e radius RG. The
transfer efficiency is an integral over the normalised by 1/RG distribution

χt = 2
∫ Ra

RG

0

1
R2

G

(
1 − r

R0

)
e−
(

r
RG

)2

rdr, (3.6)

where Ra is the acceptance radius, and R0 represents the radius of the clipping
area of the channel the atomic beam passes through. It is dependent on the
divergence angle ξ = RG/la. Note that it equals the transverse velocity ratio
to the axial velocity, ξ = vt/vz. Additionally, we can introduce an acceptance
angle α = Ra/la, and a clipping angle ω = R0/la into the above equation. After
evaluating the integral we obtain

χt(v̄z) = 1 − (1 − α

ω
)e−(αv̄z)2 − 1

2ωv̄z

√
π erf(αv̄z). (3.7)

Since it is velocity dependant we have to calculate the velocity-averaged trans-
fer efficiency by

χt(v̄z) =
∫ vc

0
χt(

vz

vt

)ϕ(vz)dvz, (3.8)

where ϕ(vz) is the normalised axial velocity. In an experimental setup, it is set
by fluorescence detection.

3.3 Loss of atoms

Discussed efficiency doesn’t provide any notion of how the collisions affect the
trapping rate. Moreover, the provided model doesn’t include loss due to the fall
into the dark state. Since the full flux coming from the effusion cell is much bigger
than the small part that can be trapped in the 2D MOT we expect the cold flux
coming from the 2D MOT Φc to be diminished by ’knock-out’ collisions. They take
place in the part of the beam which is the densest - the first few centimetres after
the effusion cell. Let us calculate the collision rate of an atom moving at velocity vc

along the x-axis. Atom is at a position l from the oven and the angle θ0(l) describes
the biggest angle that an atom can have at this position if it was emitted from the
pupil of radius rp. The majority of atoms are much hotter than the cold fraction
so v̄ ≫ vc. Loss of the flux can be expressed by
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Φ̇ = 1
2σ6ns

∫ θ0(l)

0
vr sin θdθ, (3.9)

where σ6 is the collision cross-section, angle θ0 = arctan (rp/l), and vr ≈ v̄ is
the relative velocity of the colliding atoms. Solving this differential equation

Φ(l) = Φc exp
[
−1

2σ6ns
v̄

vc

∫ l

0
(1 − cos θ0dx)

]
. (3.10)

We can substitute cos θ0 = x/
√

x2 + r2
p and substitute l with infinity since it is

much larger than the size of the pupil. Then the integral is
∫∞

0

(
1 − x/

√
x2 + r2

p

)
dl

have two terms that diverge but the infinities can be subtracted yielding rp as the
result leaving the final attenuated flux due to collisions as

Φcol = Φc exp (−σ6nsv̄τ6) . (3.11)

Variable τ6 = rp/2vc is the time of the attenuation process. The only unknown
is σ6. The influence of hot atoms on the cold elements is through the Van-Der
Waals force. When hot flux travels close to the slower atoms it exchanges momen-
tum with them resulting in a knock-out. The difference in velocity between those
groups of atoms is large so the fast atoms are not affected by this interaction. To
calculate the change of momentum we integrate the transverse component of Van
der Waals force

∆p = 1
2

∫ +∞

−∞
F⊥(r)dr. (3.12)

To model the force we will use London’s dispersion interaction between two
neutral atoms [44]. According to it the potential is U(r) = Cr−6 and the deriva-
tive over the distance r gives the force. The Bohr radius and the Hartree en-
ergy describe the constant as C = 1389a6

0Eh. Hartree energy Eh represents the
electrostatic potential energy between two electrons separated by a distance of 1
Bohr. The time t is expressed with the angle θ and the distance of the closest
approach b = r cos θ. Combining it with the equation 3.12 and solving the integral
gives us

∆p = 15πC6

16v̄b6 . (3.13)

We can assume that a small momentum transfer of ∆pmin = 0.1mvc can result
in a knockout of the atoms from a capture angle. With this assumption being
inserted in the above equation, the collision’s cross-section will be a circular area
defined by the distance of the closest approach

26



σ6 = πb2
6 = 3.2 3

√
C6

mvcv̄
. (3.14)

We have considered losses through atom’s interaction along the path to the 2D
MOT but also in the traps themselves atoms are knocked out due to the resonant
collisions. This is a quantum effect that is prevalent in cold gases. Resonant
collision is known as interaction when not only the kinetic energy is transferred
from one atom to another but so is its internal energy. In such a case, the minimum
momentum transfer value needed for any atom to be knocked out from the trap
is ∆pmin = mvc. We can repeat the process as for scattered atoms but with
an approximation by [45] F (r) = 3C3r

−4, where C3 = e2a2
0/4πε0 · D2

eg. The
constant Deg is the transition dipole moment, specific for any transition we are
modelling. For potassium, and caesium, they can be found at [31] and for silver
at [46]. Analogously to the previous part, we obtain an expression of the cross-
section of the interaction [47]

σ3 = 3

√√√√(e2a2
0D

2
eg

2πε0

)2

. (3.15)

Combining all the elements that we have obtained we get the final equation
describing the trapping rate in the 3D magneto-optical trap

L3D = χ̄taNnsv̄A
(

vc

α

)4 Ωc

8π
exp [−nsv̄(σ6τ6 + σ3τ3)] , (3.16)

where τ3 = A/4πl2 · τres. Time τres is the residence time in the trapping beams.

It is a fully computational method that takes into account interactions between
atoms. However, it has many assumptions and approximations, and it still needs
experimental measurements and a great deal of knowledge about the system. It
can be used for modelling solely a pre-existing setup since it would be difficult to
design and predict a completely new system with this technique.

4 Simulating atoms in magneto-optical traps

Magneto-optical traps constitute a universal spectroscopic tool. The ability to cre-
ate relatively cold atoms allowed for research on the photoassociation of homonu-
clear caesium [48] or potassium [49] molecules or heteronuclear molecules such as
KRb [50]. The available experimental data allow for the estimation of the inter-
action potentials between these atoms, which is important in obtaining ultracold
molecules in the ground state. In previous chapters, we described MOTs, how
they work, and what influences their efficiency. We start this chapter with an in-
troduction of essential information about caesium, potassium and silver which will
be used in the simulation. In the next sections, we will present what open source
packages are available for simulating atoms and how our program is structured.
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4.1 Properties of caesium, potassium and silver

4.1.1 Caesium

Caesium has the chemical symbol Cs and its atomic number is Z = 55. It is
an alkali metal, which means that it has a single electron on its outer-orbital -
s-orbital. Due to this characteristic, all alkali metals have similar properties. A
single electron on the outer orbital makes the element highly chemically reactive,
since the ionization energy of the electron is low. All information has been taken
from [36].

Table 1: Characteristic properties of the only isotope of caesium. Its atomic
number A, number of neutrons N , abundance in nature, atomic mass, and spin
quantum number I.

A N Abundance [%] m [u] I

133 78 100 38.96 3/2

Caesium has a single stable isotope represented in Tab. 1.

Table 2: General properties of Caesium.

Property Value
Melting point 301.59 K
Boiling point 944 K

Density at 293 K 1.93 g/cm3

Vapour pressure at 298 K 1.3 · 10−8 mbar
Electronic structure [Xe] 6s1

Caesium has a vapour pressure given in atmospheric pressure by [39]

log(psolid) = 4.711 − 3999 · T −1 + C log T + D · T −3 298K < T < 337K (4.1)
log(pliquid) = 4.165 − 3830 · T −1 337K < T < 550K. (4.2)

Caesium’s cooling transition is the D2 line with properties showed in 3.
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Table 3: Characteristic values of a D2 line for caesium. Its wavelength λ, natu-
ral linewidth Γ/2π, lifetime of excited state τ , saturation intensity Isat, and the
Doppler cooling temperature limit TD.

133Cs
λ [nm] 852.347

Γ/2π [MHz] 5.223
τ [ns] 30.473

Isat [mW/cm2] 1.654
TD ]µK] 125

4.1.2 Potassium

Potassium has the chemical symbol K and its atomic number (number of protons
in the nuclei) is Z = 19. All the information has been taken from [51].

Table 4: General properties of potassium.

Property Value
Melting point 336.8 K
Boiling point 1047.15 K

Density at 293 K 0.862 g/cm3

Vapour pressure at 293 K 1.3 · 10−8 mbar
Electronic structure [Ar] 4s1

Potassium has three stable isotopes represented in Tab. 5. Two of them are
bozons (39K and 41K) and one is a fermion 40K. Their general properties are
common and shown in Tab. 4.

Table 5: Characteristic properties of potassium’s stable isotopes. Their atomic
number A, number of neutrons N , abundance in nature, atomic mass, and spin
quantum number I.

A N Abundance [%] m [u] I

39 20 93.26 38.96 3/2
40 21 0.01 39.96 4
41 22 6.73 40.96 3/2

Potassium has a vapour pressure given in atmospheric pressure by [39]

log(psolid) = 4.961 − 4646 · T −1 (4.3)
log(pliquid) = 4.402 − 4453 · T −1. (4.4)
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It is important when calculating flux coming from the surface of a background
gas. If we simulate flux coming from an effusion then additionally we need to
know its evaporation coefficient. For potassium it is α = 0.08 at T = 1200 K [52].

Table 6: Characteristic values of a D2 line for different isotopes of potassium.
Its wavelength λ, natural linewidth Γ/2π, lifetime of excited state τ , saturation
intensity Isat, and the Doppler cooling temperature limit TD.

39K 40K 41K

λ [nm] 766.701 766.701 766.700
Γ/2π [MHz] 6.035 6.035 6.035

τ [ns] 26.37 26.37 26.37
Isat [mW/cm2] 1.75 1.75 1.75

TD [µK] 145 145 145

Potassium’s strongest spectral lines of the ground state are D1
(

2S −→ 2P1/2
)

and D2
(

2S −→ 2P3/2
)
. Those are common lines for alkali metals. The D2 line,

which parameters are put in Tab. 6, is used for cooling. For cooling atoms, it is
crucial to take into account their hyperfine structure since they don’t have a closed
transition. Due to the hyperfine structure, an excited electron can fall into a level
not accessed by the light, stopping the cooling processes. This so-called "dark
state" needs to be accessed by an additional, typically weaker, laser beam called
a repumping beam (repump). The force exerted upon the atoms is dominated by
the cooling light, tuned to an almost closed transition. The repumping light is
mainly needed to counteract the hyperfine optical pumping in the ground state,
consequent to off-resonant excitation. This is different for bosonic potassium. The
spacings in hyperfine 42P3/2 level are comparable to the natural linewidth. In this
case, the cooling transition F = 2 −→ F = 3 is not closed since the F = 1, 2 states
are excited with similar rates. This needs to be addressed by a fairly intense
repumping light which makes it in practice a second cooling beam.

4.1.3 Silver

Silver has the chemical symbol Ag and its atomic number is Z = 47. It is a tran-
sition metal. Silver, compared with other alkali metals has high electronegativity
which allows for a large electric dipole moment when part of a molecule. Making
it a promising component for polar molecules [18].

Table 7: Characteristic properties of silver’s stable isotopes. Their atomic num-
ber A, number of neutrons N , abundance in nature, atomic mass, and spin quan-
tum number I.

A N Abundance [%] m [u] I

107 60 46 38.96 3/2
109 62 53 40.96 3/2
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Silver has two stable isotopes represented in Tab. 7.

Table 8: General properties of silver [53].

Property Value
Melting point 1234.93 K
Boiling point 2435 K

Density at 293 K 10.49 g/cm3

Vapour pressure at 293 K 1.4 · 10−41 mbar
Electronic structure [Kr] 4d10 5s1

Silver has a vapour pressure given in atmospheric pressure by [39]

log(psolid) = 9.127 − 14999 · T −1 − 0.7317 · log T 337K < T < 550K (4.5)
log(pliquid) = 5.752 − 13827 · T −1 337K < T < 1600K. (4.6)

Silver’s evaporation coefficient is α = 0.9 at T = 830 K [43].

Table 9: Characteristic values of the cooling transition for silver. Its wavelength λ,
natural linewidth Γ/2π, and saturation intensity Isat.

109Ag
λ [nm] 328.1

Γ/2π [MHz] 23.4
Isat [mW] 870

The proposed cooling transition is 4d105s2S1/2 −→ 4d105s2S3/2 described in
Tab. 9 [54]. Silver is not as well documented as potassium or caesium so we have
less information about its energy structure.

4.2 Open-source software packages for atom trajectory sim-
ulation

Let us consider a 109Ag atom in a standard, six-beam magneto-optical trap (of a
cooling and repumping frequency). We would like to calculate its movement in
the trap. We can use the previously described OBE. For a 109Ag atom that has 48
Zeeman states the OBE would constitute a total of 482 = 2304 coupled, first-order,
time and position-dependent differential equations for the atom’s internal states
(plus an additional 6 differential equations to account for its classical motion).
We see that performing an efficient simulation that allows for quick solutions of
the equations is needed. Since we would like to simulate multiple systems where
we need to iterate over multiple time steps we need a solution that will be most
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importantly time and processing-efficient. We have presented all the knowledge
on which we base our theoretical model, which allows for a discussion about the
setup. In this chapter, we go through two open-source tools used for laser cooling
simulation: PyLCP and AtomECS. We describe why we have used the AtomECS,
how it was used, what were its limits, how we surpassed some of them, and what
other scripts we created to obtain our final procedure.

4.2.1 PyLCP

PyLCP is an open-source Python package created for laser cooling physics [55]. It
can calculate the trajectories of atoms or molecules in arbitrary laser and magnetic
fields. With a provided Hamiltonian the program solves optical Bloch equations,
integrates them and generates equations of motion for the particles. It has been
tested against well-known results [55]. It can calculate atom’s movement using
OBE, rate equation method or a heuristic equation which comes from direct ap-
plication of the equation 1.42. Moreover, it can include a multi-level structure of
the atom and bi-chromatic traps.

It is a powerful tool but to determine if it is suitable for our case we need to
go through the architecture of the programming language. Python has an object-
orientated programming (OOP) architecture. The OOP is based on objects that
have attributes with which we can interact by using methods. To create an object
we need a class that connects all of the mentioned components. Each time we
create an object it is saved in an arbitrary place in memory with information about
its methods. When we scale a system by adding millions of more objects repeated
memory about their methods becomes significant. Furthermore updating those
objects will be time-consuming since we have to access the memory at random
points. Additionally, arbitrary memory position makes parallel computing more
difficult. This makes OOP a poor decision if we want to simulate an atomic source
that emits thousands of millions of objects.

4.2.2 AtomECS software

AtomECS [56] is an open-source Rust package created for simulating magneto-
optical trap and Zeeman slower. It is implemented using an entity-component
system (ECS). It is a programming architecture, where entities are integers iden-
tifying objects (atom 1, atom 2 etc.), it has components which define its character-
istics (for example position component would keep X, Y, and Z coordinates) and
systems that process entities (for example takes the component of positions, and
velocities and changes the positions of all the entities based on the time step and
velocity). This allows all the components to be listed in a single place in memory
and when a system is invoked it goes through all of them saving time and allowing
parallel computing. Additionally creating new objects doesn’t take any additional
memory besides the one we give as its components. This makes ECS a natural
programming architecture to use for the simulation of atoms in MOT and that is
why we picked it above the PyLCP Python package.
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4.2.3 Abilities and limits of AtomECS

In AtomECS simulation we place different entities inside a simulation world, for
example, laser beams, magnetic field, and atoms. We can define their different
components. AtomECS simulates the movement of the atoms by calculating the
force described in section 1.6. For that, it calculates the detuning based on the
atom’s position and velocity relative to laser beams and magnetic field. The
magnetic field can be inserted as a quadrupole field or as an explicitly defined
value on a 3D grid. AtomECS supports different types of sources as an oven with
a 3D Maxwell-Boltzmann distribution with a Lambertian spread of the intensity.
Additional elements that can be added are: an upper-velocity limit for simulated
atoms, fluctuations in the scattering force, loss of atoms due to relaxation to a
dark state, and simulation volumes to limit the space atoms can go through. The
script gives back the subsequent atoms’ positions and velocities in a .txt file.

The transition that we would like to use for cooling has to be addressed at the
beginning of the simulation. It will be the only transition for this system that the
cooling will be regarded for. The software recognizes atoms as two-level structures
so it does not regard the scattering on different levels, which could lead to heating.
This also makes it difficult to simulate multiple species at the same time, and take
into account different colour traps or repumping beams.

Limitations of the AtomECS include:

1. the magnetic field evolves infinitely with a linear dependence on position;

2. simulated volume affects purely atoms so it is not possible to shape the
beam’s profile by it;

3. simulation provides only the trajectories of atoms and doesn’t include any
further calculations;

4. software has an intrinsic limit on how far away from a laser beam atoms can
be inserted into the simulation;

5. cooling forces are calculated only for one transition per simulation.

4.2.4 Introduced changes

With the described limits inherent to the AtomECS, it is impossible to simulate
a 2D MOT and a 3D MOT where a push beam transfers atoms. A magnetic field
from both traps will influence both of them. The push and counter-push beams
won’t be shaped by the spaces they propagate exerting force on the atoms through
the whole length of the system. Moreover, it is not possible to create atoms far
away from the beams and the software does not simulate two-colour traps. To
perform designed simulations we have addressed those problems.

In the AtomECS script, we have modified the quadrupole component, so that it
will shape the magnetic field to decrease to 0 outside the trapping range. We have
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added a mask with an adjustable radius for a Gaussian beam. It will set intensity
to 0 as if it was modulated by an iris or a pipe. We have added a specific entity
that will modify the simulation space allowing for limitless positioning of atoms
relative to the laser beams. We have also created a solution for a simulation of
traps of different colours. We created a script that will perform a simulation of the
first trap of a single colour, then when it calculates and saves all the trajectories,
a second simulation will be initiated by inserting atoms from the saved file and
simulate a second trap of the second frequency.

The last limit remains which is the lack of possibility to simulate the effect
of the repumping beam or two-colour cooling. This won’t be considered in the
forthcoming simulations.

4.3 Simulation scheme

4.3.1 Calculating atomic movement

In this section, we will go through the basis of simulation using the AtomECS
package on an example of a novel 2D+ 3D MOT system for caesium atoms. The
script was written by us analogically to the examples provided on the AtomECS
GitHub page [57].

1 let now = Instant::now();
2

3 let mut sim_builder = SimulationBuilder::default();
4 sim_builder.add_plugin(LaserPlugin::<{BEAM_NUMBER}>);
5 sim_builder.add_plugin(LaserCoolingPlugin
6 ::<Silver109_328,{BEAM_NUMBER}>::default());
7 sim_builder.add_plugin(AtomSourcePlugin
8 ::<Silver109>::default());
9 sim_builder.add_plugin(FileOutputPlugin::<Position, Text, Atom>

10 ::new("pos.txt".to_string(), 100));
11 sim_builder.add_plugin(FileOutputPlugin::<Velocity, Text, Atom>
12 ::new("vel.txt".to_string(), 100));
13 let mut sim = sim_builder.build();

First, we start measuring the time the simulation takes, by initialising struc-
ture Instant , a saved point in time. Next, we create a simulation builder which
is a structure that follows a pattern in building a simulation. We insert additional
plug-ins which are external parts of the code that allow for specific calculations or
saving the results in a .txt file. We specify how many laser beams we will simulate,
what transition will be used for cooling and what kind of atomic species will be
cooled. Information about the atom and its transition is saved as an entity where
we add specific characteristics.
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1 species!(Cesium133, Cesium133_852D2, 133);
2 transition!(
3 Cesium133_852D2, //
4 351_725_718_500_000.0, // 4 2S1/2 - 4 2P3/2 transition
5 5.22e6, // Natural Line Width
6 11.0, // Saturation intensity in W/m^2 = 10*mW/cm^2
7 1.33*BOHRMAG, // Shift of the sigma+ transition in

magnetic field↪→

8 -1.33*BOHRMAG, // Shift of the sigma- transition in
magnetic field↪→

9 0.0 // Shift of the pi transition in magnetic field
10 );

We obtain a fully configured simulation object sim . The command let mut
creates an object that can be changed after initialisation. Before adding entities we
need to introduce non-mutable 23 parameters of the system. They will be part of
the components defining all the entities and will be visible in the next parts of the
script as names of the physical properties, for example quadrupole_gradient_2d .

1 sim.world.insert(ApplyGravityOption);
2

3 sim.world
4 .create_entity()
5 .with(QuadrupoleField3D::
6 gauss_per_cm(quadrupole_gradient_2d, Vector3::x()))
7 .with(Position {pos: Vector3::new(0.0, 0.0, shift_z *

0.001)})↪→

8 .build();
9

10 sim.world
11 .create_entity()
12 .with(QuadrupoleField3D::
13 gauss_per_cm(quadrupole_gradient_3d, Vector3::z()))
14 .with(Position {pos: Vector3::new(distance * 0.001, 0.0,

0.0)})↪→

15 .build();

The first system that we introduce is ApplyGravityOption . It will add a
gravitational force in the −Z direction to every entity with mass. The next step is
to create a structure of a quadrupole magnetic field. We specify the gradient (in
G/cm), symmetry axis, and position of the centre (in m). The coordinate system is
defined where the z-axis faces upwards, against the direction of gravity and the x-
axis is aligned with the direction of the atomic beam outgoing from the 2D MOT.
The system updates the grid of the magnetic field using the calculate_field
function. It was modified to decrease with the position outside the trap to 0.
This is not a physical approximation since the magnetic field outside the trap is
described by integral equations [58]. With such a magnetic field atoms in a laser
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light would experience the Zeeman slowing. To ease the calculations we decided
to approximate that it falls directly to 0.

1 pub fn calculate_field(
2 pos: Vector3<f64>,
3 centre: Vector3<f64>,
4 gradient: f64,
5 direction: Vector3<f64>,
6 ) -> Vector3<f64> {
7 let delta = pos - centre;
8 let x = delta[0];
9 let y = delta[1];

10 let z = delta[2];
11 let z_comp = delta.dot(&direction) * direction;
12 let r_comp = delta - z_comp;
13 if (x*x + y*y + z*z).sqrt() > 0.1 {
14 0.0 * gradient * (r_comp - 2.0 * z_comp)
15 } else {
16 gradient * (r_comp - 2.0 * z_comp)
17 }
18 }

Next, we add laser beams. We present an example of the code with a beam
that is part of the 2D MOT. Added components are the position of the centre at
its smallest waist Intersection , 1/e radius, power (in W), direction, Rayleigh
range, and ellipticity. Ellipticity is defined as

ϵ =
√

1 − r2

R2 , (4.7)

where R and r are the big and small radius of the beam. Rayleigh range has
been set to infinity for every beam except the push beam since it interacts at a
long enough distance that its divergence cannot be neglected. Its Rayleigh range
was calculated by

zr = 2π
r2

1/e

λ
, (4.8)

where waist has been substituted by the 1/e radius w0 = 2/
√

2 · r1/e. As this
beam will have to interact with atoms we need to add component CoolingLight
holding information about laser cooling: transition, detuning, and polarisation.

1 sim.world
2 .create_entity()
3 .with(GaussianBeam {
4 intersection: Vector3::new(0.0, 0.0, shift_z *

0.001),↪→

36



5 e_radius: radius_2d * 0.001 / 2.0_f64.sqrt(),
6 power: power_2d * ratio_power_3d_2d * 0.001 / 2.0,
7 direction: Vector3::new(0.0, 1.0, 1.0).normalize(),
8 rayleigh_range: f64::INFINITY,
9 ellipticity: ellipticity,

10 })
11 .with(CoolingLight::for_transition::<Cesium133_852D2>(
12 detuning_2d,
13 1,
14 ))
15 .build();

For a push beam, we can add component CircularMask which has been mod-
ified so that by providing the radius of the mask we modify the beam profile to
cut away an outer ring, as if done by an iris. We created such an entity 11 times
for 6 3D MOT beams, 4 2D MOT beams and one push beam, where the detun-
ing, polarisation, and direction were adjusted respectively. The next step in the
simulation-building process is to add atoms. We can do it by placing atoms one at
a time with specified positions and velocities, creating an effusing surface, placing
an atomic beam, and lastly with an oven. The oven simulates only its orifice so
we specify only its characteristics.

1 sim.world
2 .create_entity()
3 .with(
4 OvenBuilder::<Cesium133>::new(
5 temperature,
6 Vector3::new(0.0, 0.0, -1.0).normalize())
7 .with_aperture(OvenAperture::Cubic { size:

[radius_2d * 0.001 * 2.0, small_radius*2.0,
thick * 0.001]})

↪→

↪→

8 .build(),
9 )

10 .with(Position {
11 pos: Vector3::new(0.0, 0.0, small_radius),
12 })
13 .with(MassDistribution::new(vec![MassRatio {
14 mass: 133.0,
15 ratio: 1.0,
16 }]))
17 .with(AtomNumberToEmit {
18 number: number_to_emit_s,
19 })
20 .with(ToBeDestroyed)
21 .build();

Components that have to be specified are position, shape, volume, direction,
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temperature (in K), atomic species, ratio, and how many atoms it emits. The ratio
is the probability of emitting this particle. We can introduce abundance at this
point if we are modelling a natural sample and atom with more than one stable
isotope, but in this example, caesium is the only stable isotope. Lastly, we add a
component ToBeDestroyed , which marks this entity that it should be deleted after
the first iteration. This component is specific to ovens, as we simulate a group
of atoms emitted simultaneously, rendering the oven redundant in the next time
steps. Atoms can be also emitted at a specific rate using EmitNumberPerFrame .
To model the background gas as an atomic source we have set 6 ovens as emitting
surfaces around the cooling volume of the trap according to the model of [21].
Every oven was set to emit towards the centre.

1 let dir = Vector3::new(1.0, 0.0, 0.0).normalize();
2 let perp_x = dir.normalize().cross(&dir);
3 let perp_y = dir.normalize().cross(&perp_x);
4

5 sim.world
6 .create_entity()
7 .with(Position {
8 pos: Vector3::new(0.06, 0.0, shift_z * 0.001),
9 })

10 .with(Cylinder {
11 radius: 0.00075,
12 length: 0.02,
13 direction: dir,
14 perp_x: perp_x,
15 perp_y: perp_y
16 })
17 .with(SimulationVolume {
18 volume_type: VolumeType::Inclusive,
19 })
20 .build();

We have provided all the main components of the cooling setup. Now we need
to add boundaries that will delete outlying particles saving computational time.
It is a simple entity with an additional SimulationVolume component. It can
be either Inclusive or Exclusive , which determines if the system deletes atoms
that go inside the volume or escape it. We create a simulation volume for the source
and the science chamber, a connection between them, and a differential pumping
tube. Additionally, by adding and adjusting the simulation volume components,
we create apertures that shape the atomic beam. In this example, we have a
volume shape as a Cylinder for which we had to define the symmetry axis to be
the x-axis.

1 sim.world.insert(VelocityCap { value: velocity_cap });
2

3 sim.world.insert(Timestep { delta: 1.0e-6 });
4
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5 sim.world.insert(ApplyGravitationalForceSystem);
6

7 for _i in 0..(time * 1000) {
8 sim.step();
9 }

10

11 println!("Simulation completed in {} ms.",
now.elapsed().as_millis());↪→

At the end of the script, we add VelocityCap (in m/s), which is a component
that in the first frame deletes all the atoms that have velocity below the set value.
It is advised to do so since it saves a great deal of computational power. Doing so
doesn’t influence the results because the simulation doesn’t consider atom-atom
collisions and, an atom has to have a low kinetic energy to be trapped. To evaluate
the system in time we add a loop that iterates the simulation by a predefined time
step.

4.3.2 Trajectory analysis

For calculating the system’s characteristics, we compared Matlab, Rust, and Python
as possible programming environments. Rust would be the fastest due to its scal-
ability and efficient memory management, but Python was used because we had
the most experience in it since it is the most popular programming language used
in laboratories to analyse data and control devices. Moreover, the speed difference
with Rust wouldn’t be substantial in this case. In this section, we will explain our
Python script that calculates the flux based on the trajectories using the theoret-
ical model described in section 2.2 and give the velocity distribution after the 2D
MOT. Files are CSV tables converted from the .txt files. In a single row, there is
a label and the three components of the atom’s position (or velocity). Subsequent
iterations are saved by repeating the labels with updated values. First, we filter
out the iterations that don’t contain any atoms. The next step is to take only
the atoms that have got out from the 2D MOT, so their position in the x-axis
has crossed the whole trap chamber and the tube leading to a science chamber.
This decreases greatly the computational time in the next steps. To measure the
velocity distribution at a specific X position we check at which time the atom
has been cooled down by the 2D MOT and then how much time it took to cross
the position X. We divide the distance from the centre of the 2D MOT to X,
by the time obtaining the mean velocity of the atom. We distinguish the atoms
trapped in the 3D MOT by checking which atoms have their final velocity below
a set threshold and have not left the simulation volume. The threshold is set to
be far smaller than the mean value of the velocity distribution of atoms outgoing
from the 2D MOT. Next, we determine the efficiency of trapping as the ratio of
the trapped atoms to the number of all atoms considered (including atoms whose
velocity was above the velocity cap). If the atomic source is an oven we calculate
the flux according to the model 2.3 discussing its Clausing factors. If it is a
background gas we calculate using the impingement rate.
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4.3.3 Optimisation

For the optimisation, we use Matlab as it has a developed function that does
Bayesian optimisation bayesopt() , it is easier to visualize 3D data, and a basic
example was provided in the AtomECS GitHub repository. We define the time
we want the optimisation to take and an evaluation variable. The function will
be tasked with decreasing the evaluation variable. We need to deliver limits for
the parameters and initial values that we believe should provide a decent result.
An additional version of the Rust script had to be created that imported values of
the parameters from a separate file. This allowed exchange between Matlab and
Rust scripts.

Figure 4: Negative of trap efficiency as a function of optimisation script iterations.
The green line represents the calculated value and the blue line shows the lowest
achieved by the function throughout the optimisation time. This optimisation
performed for seven hours and optimised values for 6 parameters.

Next, it was crucial to establish a scoring variable that would decrease only in
the case of trapping atoms in the 3D MOT. For example, the first proposed score
was the negative number of atoms that passed through a plane just before the
3D MOT but didn’t pass the distance afterwards. In the process of optimisation,
such scoring encouraged a combination of parameters for the laser beams that
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deflected the atoms to the side. For this reason, atoms were also filtered to have
a velocity below 0.3 m/s, a value far below the velocities of the atomic beam
distribution. This additional constraint made the optimisation to propagate a
solution where atoms were trapped and cooled. Fig. 4 presents how the algorithm,
by changing the parameters around the lowest achieved result (blue line), obtains
a lower evaluation score with every iteration (green line).

5 Proof of concept

As shown we have established a theoretical model capable of simulating and op-
timising an MOT system. Before applying it to a new setup we have to check to
what level this model can be trusted. For this reason, we have simulated three
different documented experiments one for each species we will be working on. Sim-
ulations have been performed using all the information in the articles and thesis
connected to the research. In the descriptions of the experimental setups, we have
included information solely relevant to the simulation. Elements, like a probing
beam used for spectroscopy of the atoms, are not mentioned.

5.1 Caesium

We would like to perform the first verification of our simulation, using experimental
data from Aden Lam’s apparatus dedicated to the formation of ultracold sodium-
caesium [22] [59]. In this experiment, caesium atoms are cooled in a 2D-MOT -
push beam - 3D-MOT configuration, similarly to the configuration that will be
implemented in our newly created experiment

5.1.1 Experimental setup

The sources of caesium are dispensers which, when heated, effuse atoms. Dis-
pensers are embedded near the trap centre. They create a caesium vapour which,
as explained in section 2.1, can be obtained at room temperature. The vapour
pressure in the glass cell is in the 109 torr range.
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Table 10: We present characteristics crucial for the simulation of the documented
experimental setup of a 2D+3D MOT for caesium atoms. We include wave-
length λ, radius R, power P and detuning δ for lasers that create the traps and
the push beam (denoted by ’+’), the gradient of used magnetic fields ∆B, and
the distance d between the centres of the two traps. Every laser beam shares the
same detuning.

Parameters Value
d [mm] 610
λ [nm] 852

R2D [mm] 34x8
R3D [mm] 6.9
R+ [mm] 2.2
P2D [mW] 150
P3D [mW] 10-20
P+ [mW] 3

δ [Γ] -1.9
∇B2D [G/cm] 13
∇B3D [G/cm] 13

In a glass vacuum chamber two retro-reflected beams create a Doppler cooling
region and two electromagnets in the anti-Helmholtz configuration create a mag-
netic gradient trapping the atoms in the X, and Y axes, as defined in Fig. 5. The
beams creating a 2D MOT are elliptical so we describe their size by the major
radius R2D and ellipticity defined as

ϵ =
√

1 −
(

r2D

R2D

)2
, (5.1)

where r2D is the minor radius. For the purpose of this thesis, radius will
describe the major radius of an ellipse. Two smaller and less intense beams are
introduced as push and counter-push using a 45◦ mirror inside the glass cell.
Through the mirror, a hole serves as an escape output for the atomic beam and
a differential pumping tube. The pressure differential between the glass cell and
science chamber is 10−3, enabling a pressure of 10−11 Torr in the science chamber
at 10−9 Torr in the 2D MOT region.

42



Figure 5: Scheme of Aden Lam’s experimental setup. Accommodated from [22]
with a modified coordinate system to match the one of simulation.

The ratio between the counter-push and push beams is adjusted to propel
atoms towards the science chamber, as seen in Fig. 5. It has been experimen-
tally set as 10 : 1. In the final destination, five beams and another set of mag-
nets create a 3D MOT. Five beam configurations come from using 4 indepen-
dent horizontal beams and one retro-reflected vertical beam. The final trap is
at a distance d = 61(6) cm from the first. The 2D MOT is set above the 3D
MOT ∆z = 3.0 mm. This compensates the sink in the z-axis due to the gravita-
tional force. The atomic beam arrives at the science chamber at an angle of 25◦

to the closest horizontal laser beam. The group achieved a peak flux, coming
from 2D MOT, of 4 · 108 atom/s for parameters shown in Tab 10. The measured
trapping rate was around 3.5 · 108 atom/s.

5.1.2 Original simulation

In the article this optical system has been modelled using a numeric Monte Carlo
simulation, where it was assumed that the 2D MOT was loaded from the back-
ground Cs vapour. The initial velocity distribution of the atoms was assumed as
a Maxwell-Boltzmann distribution (at temperature T = 300 K). To initiate an
atom its velocity was picked from this distribution and its position was randomly
set in the glass cell. Forces have been established according to the theory pre-
sented in 1. The Doppler forces from each laser beam were summed and then
the classical Monte Carlo trajectory simulation was performed. In the process,
simulation determines if an atom is captured in the 2DMOT, then if it reaches
the 3DMOT region in the science chamber, and finally if it is captured by the 3D
MOT. The simulation ends each trajectory if the atom hits a wall. After running
300,000 trajectories, the capture efficiency α is calculated. It is the number of
atoms trapped in the final trap divided by the number of simulated objects. The
loading rate was estimated by
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L = α
Ncell

τcapture
. (5.2)

The number of Cs atoms in the cell Ncell was determined by an experimental
time-of-flight measurement. The 2D MOT loading time τcapture = 11.5 ms was a
constant determined in the model. It is the average time it takes for an atom to be
captured in the 2D MOT. The loading rate was estimated as L = 5(4)·107 atoms/s.
This model provides only the capture efficiency of the system and, to obtain the
trapping rate, it is crucial to build and measure the experimental setup. The
simulated trapping rate was of an order smaller than the measured value, which
was attributed to the underestimation of the capture efficiency, by the model.
It assumed that atoms hit the glass cell wall and stick to it. In the experiment
there has been no metal build up observed on the walls, which meant that atoms
desorbed and re-joined the cooling dynamics

5.1.3 Our simulation

Now we will present how this experimental set-up was analysed by our program.
The program was set to save subsequent positions and velocities for each atom
every 100th iteration. Each step is ∆t = 1 µs and the whole simulation time
was t = 0.1 s. We chose step size ∆t = 1 µs as optimal. Choosing a step size
that was too large would have reduced the precision of the simulation and could
have caused some elements of the evolution to be missed. Choosing a step size
that was too small would have meant significantly longer calculations, especially
since we assumed the time of the entire simulation to be t = 0.1 s. Laser cooling
calculations have been set to address 852 D2 transition with the mass of the
particles m = 133 u. Gravitational force has been initiated. Since the atoms are
captured from a background gas we have created six rectangular effusion surfaces
at the limits of cooling volume, which is the overlap of all the beams in the
2D MOT. Surfaces created a rectangular box 2R2D x 2r2D x 2r2D, where r2D is
the minor radius and r3D is the major radius of the 2D MOT laser beam. This
approach was done according to the theoretical model of [21].

Each of the effusion surfaces emitted atoms in the inner direction. The number
of atoms to be emitted per surface was set by the number of all atoms scaled by
the ratio of the single surface to the sum of all surfaces. In AtomECS they are
described as 3D objects so their thickness was set as 1 mm. Four laser beams
have been added with an as-provided (Tab. 10) detuning, intensity, radius, and
ellipticity. Their smallest waist has been set at the (0, 0, 3.0) mm point. The
beam diverges according to its Rayleigh waist. Lasers’ direction was set to be
perpendicular to each other, in the YZ plane and at an angle of 45◦ to a Y axis.
Their polarisation was set to be circular. Both were set to be the same handedness
since polarisation for a laser object is set according to the direction of the local
magnetic field. In the AtomECS world beams perpetuate in infinity so we could
not add a counter-push beam since it would disturb atoms in the 3D MOT. To
preserve its influence the push power has been decreased by 25%. This number was
calculated by comparing forces exerted on an atom in an asymmetric 1D optical
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molasses, and a single push beam. We have not included the repump beams and
have not initiated the possibility for the atom to fall into a dark state. By doing
so we presume that the repumping efficiency is 100%.

Figure 6: Trajectories of atoms in three axes in the vicinity of the 3D MOT. Only
atoms that have been trapped are shown. The plot shows volume around the
position x = 0.61 m.

Quadrupole magnetic gradient has been added with a symmetry axis set as
X. Magnetic field covers the same centre as laser beams. The 3D trap has been
constructed similarly, adding a pair of lasers to trap in all three axes. The power
is split accordingly: 10 mW for 4 horizontal beams and 20 mW for a retro-reflected
vertical beam, which creates a stronger cooling in the Z axis. The magnetic field
symmetry axis coincided with Z. Distance between intersections of lasers in 2D
MOT and 3D MOT was set as d = 610 mm. We have added bounds to the
simulation. They were: a box of glass cell’s dimensions, a narrow 1.5 mm wide
tube, a wider tube for the atomic beam to propagate, and the space chamber.
The last two boundaries are big enough to limit solely the outliers’ movements.
Lastly, a velocity cap was set as vmax = 70 m/s.

Table 11: Simulation estimations of capture velocity vc, trapping efficiency α, and
trapping rate L provided in the article [22] and calculated with our program.

Original simulation Our simulation
vc [m/s] 20.6 ± 1.0 22.5

α 6 · 10−5 9 · 10−5

L [atoms/s] 5(4) · 107 (6.18 ± 0.05) · 106

The originally measured trapping rate, as seen on Tab. 11, was an order smaller
than the experimentally measured by the group L = 3.5 · 108. This difference was
justified by the underestimation of the capture efficiency by the original model.
It assumed that atoms hitting the glass cell wall stick to it. The group did not
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observe any metal build-up on the glass cell, which signified that atoms could
desorb and re-enter the cooling dynamics. This assumption is also reflected in our
simulations.

Figure 7: Velocity distribution of atom just before the 3D MOT with a Gaussian
fitting. Number of analysed atoms was 575.

Our simulation provided efficiency in the same order. Comparing the provided
trapping rates we see that our result is of an order smaller, but after performing a
Z-test we can state that those variables are separated by a 1.1 standard deviation
from each other making them not statistically different. This is largely due to
the big uncertainty of the original approximation. Moreover, we have analysed
the velocity distribution of an atomic beam coming from the 2D MOT. In an
experimental setup, this is done by acquiring fluorescence in the science chamber
(without the 3D MOT beams present) while at the same time, the 2D MOT
is abruptly shut down. The signal decreases approximately in the shape of an
error function. By integrating it we get a Gaussian distribution of velocity. It’s
important to mention that it measures the mean velocity of the atom not the
actual velocity in the plane of the measurement. To replicate it in the simulation,
we calculated the time it takes for every atom to arrive at a plane just before the
3D MOT (since the forces of the 3D MOT are still present). Capture velocity
is shown in Tab. 11 and the parameters of the distribution in Fig. 7. We have
defined capture velocity as two standard deviations above the mean. For context,
the measured capture velocity was vmc = 26(1) m/s. Our simulation predicts the
main characteristics of the system well compared with an established simulation.
It correctly estimates not only values like efficiency or capture velocity but also
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trapping rate which originally was calculated using a measured variable, validating
our model of the atomic source.

5.2 Potassium

A second simulation, of the first realised bright source of cold potassium atoms, was
performed. It was used to create K-Rb molecules, a Bose-Bose mixture [21] [60].
We have simulated a 2D+ MOT for 39K. We underline that we neglect the hy-
perfine structure in the simulation which can be especially important in the case
of potassium as explained in section 4.1.2.

5.2.1 Experimental setup

As in the previous setup properties of potassium allow for loading the 2D MOT di-
rectly from the background gas. To sustain the vapour pressure a set of dispensers
is used. Potassium has three stable isotopes and they are released in a natural
abundance mixture, from the dispensers. The chamber containing the source is
connected with the ultra-high vacuum (UHV) science chamber by a 10 cm bel-
low. The output of the 2D MOT chamber was a 1 mm wide hole drilled inside
a 45◦ mirror. As before, a mirror was used to introduce push and counter-push
beams. A hole in the mirror allowed for the transfer of atoms. It also maintained
a differential pumping of 10−4 pressure ratio.
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Figure 8: Scheme of the Jacopo Catani’s experimental setup. Accommodated
from [21] with a modified coordinate system to match the one of simulation.

The quadrupole magnetic field is generated by a pair of rectangular coils, fixed
around glass windows. Due to the chamber’s geometry, the coils were elongated
in the X axis but it still gave the required, almost 2D axial, symmetry to the
trapping field. The magnetic gradient in the y-z plane is set to 17 G/cm. The
current in the coils was adjusted to compensate for stray magnetic field due to
which the longitudinal magnetic gradient along x is a factor of 10 smaller than in
the y-z plane.
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Table 12: Characteristics crucial for the simulation of the documented experi-
mental setup of a 2D+ MOT for potassium atoms. We include wavelength λ,
radius R, power P and detuning δ for lasers that create the trap and the push
beam (denoted by ’+’), the gradient of used magnetic field ∆B.

Parameters Value
λ [nm] 767.5

R2D [mm] 14.1x4.7
R+ [mm] 0.75
P2D [mW] 80
P+ [mW] 6
δ2D [Γ] -5.8
δ+ [Γ] -5.2

∇B2D [G/cm] 17

The laser light used for cooling had a wavelength of 767.5 nm. The cooling
beams had a 3:1 elliptical shape, with a smaller waist of 9.4 mm. Two such beams
were circularly polarised and retroreflected creating a 2D-MOT. The maximum
laser power was 80 mW. Along the z-axis direction, an additional σ+ polarized
beam was inserted. It was called a push, with a waist of 1.5 mm. A counter-push
beam was also introduced using the 45◦ mirror. It had a hollow profile since it
entered the 2D-MOT after reflection upon the drilled mirror. Another vertical
beam called a plug was used to perform the time-of-flight (TOF) measurements
after the 2D+ MOT.

5.2.2 Performed simulation

The numerical simulation done in the discussed experiment was based on the
numerical integration of the equations of motion which gave a phase-space trajec-
tory. The simulation begins with atoms at the 2D MOT boundary, a rectangular
box with dimensions of the lasers’ waists. From the integration, the fraction α
was extracted. It was defined as the ratio of the atoms exiting the mirror hole
to the atoms entering the 2D-MOT volume. To obtain the total flux, the total
number of atoms entering the cooling volume per second, at pressure p and room
temperature T was multiplied by α:

Φ = αS
p√

2πmkBT
. (5.3)

Variable S is the surface emitting atoms. From the simulation, the longitudinal
velocity distribution of the atomic beam, and the distribution of the cooling time
can be obtained. The simulation neglected multiple scattering of light and intra-
beam atomic collisions. The collisions with background gas were accounted for
by weighting each trajectory with a factor exp(−γtc), where the collision rate was
set as γ = 60 s−1. Moreover, the model deleted atoms that were flying in a cone
34 mrad wide around the longitudinal axis X. Setting the experimental parameters
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as in Tab. 12, the group obtained total flux as Φsim = 8.7 · 1010 atoms/s, where
the measured flux was Φ = 6.2 · 1010 atoms/s.

5.2.3 Our simulation

In this section we present simulation of the aforementioned only a 2D MOT with
a push beam so only those objects were put inside the world. We did not initiate
gravitational force since the article did mention gravitational acceleration in the
simulation.

Figure 9: Visualisation of a 2D MOT for potassium atoms. Where the green lines
depict the borders of effusing surfaces, the red ellipsoid - cooling volume and the
orange tube - push beam.

Parameters were set as in Tab. 12 for solely the cooling laser beam at wave-
length ω1 = 767.5 nm. We are not able to simulate interaction with two transitions
and also the parameters for repump were not specified. Contrary to the previous
simulation we have not scaled down the power of the push beam to take into ac-
count the influence of the counter-push beam since the ratio between them was
not specified.
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Figure 10: Trajectories of atoms in three axes. Only atoms that have been trapped
are shown. The plot shows volume around the 2D MOT and after the differential
pumping tube.

The magnetic field was set of axial symmetry and of gradient ∇B = 17 G/cm
in the YZ axis.

Table 13: Simulation estimations of trapping rate L provided in the article [21]
and calculated with our program.

Original simulation Our simulation
L [atoms/s] 8.7 · 1010 (2.56 ± 0.54) · 109

Limiting space for the chamber and the tube after the small pipe was set to be
big enough to only delete outliers. Beside a 1 mm pipe we have added a thin tube
of radius 1.2 mm at a distance 35 mm to filter out atoms diverging at an angle
bigger than 34 mrad. The calculated flux was significantly lower than the one of
the original experiment. This could be due to the lack of a repumping beam which
in the case of potassium is an integral part of the cooling scheme. Additionally,
the source of the discrepancy could be the desorption of atoms from the wall of
the chamber, as it was the case for caesium.

5.3 Silver

The last proof-of-concept simulation was of silver atoms trapping and cooling
system realised by the group [25] [61]. It is the only MOT for this element and to
our knowledge, there are no performed simulations of silver atoms in a magneto-
optical trap. We have simulated a 3D MOT loaded with 109Ag directly by an
oven.

5.3.1 Experimental setup

Laser setup consisted of 40 mW laser beam at 328 nm. It was superimposed with
the repumping light which had a few milliwatts of power. It was divided into
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three parts to form the trapping beams of the MOT, which were retro-reflected in
3 axes.

Table 14: Characteristics crucial for the simulation of the documented experimen-
tal setup of a 3D MOT for silver atoms. We include wavelength λ, radius R,
power P and detuning δ for lasers that create the trap, the gradient of used mag-
netic field ∆B, and the distance d between the atomic source and the trap.

Parameters Value
d [mm] 500
λ [nm] 328

R3D [mm] 3
P3D [mW] 1.5

δ [Γ] -1.0
∇B3D [G/cm] 10

The vacuum system consisted of two chambers. The first one contained an
oven in the form of a ceramic crucible heated by a tantalum wire to produce an
effusive atomic beam. It was operated at 1200 K. The background pressure was
measured to be 2 · 10−9 mbar. The beam was collimated by two apertures after
which it entered the second chamber through an opening 1 mm wide to guarantee
differential pumping. The distance between the oven and the trap centre is 0.5
m, denoted as d. Because of the low laser power available and the complexity of
the laser system, it was decided to load the trap directly from the thermal atomic
beam without any further beam slowing. In addition, a second oven located 3 cm
from the centre of the trapping region was inserted to be used as an additional
source. It was a small filament of thin rhenium wire to which a small droplet of
molten silver was applied. It worked as a dispenser. In the article the trapping rate
was not directly mentioned but we have calculated it knowing that the number
of trapped atoms was 106 and the trap’s lifetime was said to be τ = 16 s, which
gives a trapping rate of L = 6.3 · 104 atoms/s.

5.3.2 Our simulation

Even though the experiment did not cover any simulation of the setup we still
wanted to perform one to verify how our theoretical predictions match the experi-
mental result, before proceeding to simulations of the new system, currently under
construction in our laboratory.
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Figure 11: Trajectories of atoms in three axes in the vicinity of the 3D MOT.
Only atoms that have been trapped are shown.

Specific elements of this system were the use of an effusion cell instead of the
background gas, and the very low efficiency of the trap which requires simulating
a large number of objects. The gravitational field was initiated since the distance
between the cell and the trap was substantial and we wanted to recreate the
specifics of the trap as closely as possible. The 3D MOT was constructed as for
the previous setup, with 6 beams and a magnetic quadrupole field with Z-axis
symmetry.

Table 15: Simulation estimations of trapping rate L provided in the article [25]
and calculated with our program.

Original measurement Our simulation
L [atoms/s] 6.3 · 104 1.1 · 105

Individual parameters were set as in Tab. 14. Since the efficiency of the trap
is low and the temperature of the effusion cell is very high with no other slowing
mechanism atoms with velocities below capture velocity are scarce. To simulate
the trap going around this issue we have sampled the atom’s velocity for Maxwell-
Boltzmann distribution at room temperature T = 300 K and then scaled the
obtained flux with a ratio
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η =
∫ 40

0 f(v, mAg, T = 1200 K)dv∫ 40
0 f(v, mAg, T = 900 K)dv

≈ 0.127, (5.4)

where f(v, m, T ) is the Maxwell-Boltzmann velocity distribution. The cell’s
pupil was simulated as a 1.1 x 1.1 mm square, 1 mm thick. After the effusive
output, we inserted a tube 20 mm wide and 495 mm long, where atoms could freely
propagate. Before the science chamber, an aperture was put in, that filtered all
the atoms that wouldn’t interact with the lasers. It was 6.8 mm wide and 0.5 mm
long. Lastly, the space for the 3D MOT was added as a 9 x 9 x 9 mm cube. The
velocity cap was set to 40 m/s so that we wouldn’t simulate atoms with much
higher initial velocity than the capture velocity.

When calculating the initial flux coming from the hot source we used the model
explained in 2.3 for a non-ideal effusion cell. We assume that the dimensions of the
body of the cell are ideal but the orifice and the evaporation coefficient are not.
We have calculated the correction factor as FN = 0.27 [39]. As seen in Tab. 15 we
have obtained the trapping rate almost twice bigger than it was measured. This
discrepancy could be because the rate was calculated using measured parameters
that are established with little accuracy. For previous simulation estimated trap-
ping rate was an order smaller than the measured value which we explained partly
through desorption of atoms from the chamber’s walls. In the case of silver we
don’t see this decrease, because the walls are at room temperature at which silver
has very low evaporation rate.

5.4 Conclusion

We have performed three simulations representing different experiments. They
differed with the laser beam parameters, magnetic field, atomic species, layout
and the types of traps used. Our simulation provided an estimation close to the
one simulated or measured. This showed that the simulation based on AtomECS
software with additional modelling of the atomic source is a robust, versatile and
sufficiently accurate tool.

6 Novel configuration for ultracold molecules

Historically, each research group developed their own simulations to predict the
performance of the cooling process in each constructed experimental setup [21, 22].
Optimization was usually based on the experience of the group members and was
rarely a streamlined process [28]. Often, simulations required some experimental
input such as the velocity distribution of atoms in the beam emitted by the 2D
MOT [22, 28]. As a result, simulations were mainly tools to show that the cooling
process in a given experimental setup was well understood, but rarely provided
predictive power useful for the actual optimization of the parameters at the design
stage. However, the underlying physics was always the same, and over time several
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software packages that allow simulation of the cooling process were developed. We
decided against writing the entire simulation from scratch and opted for adapting
existing software to meet our needs. In this way, we increased the probability that
the chosen approach will be robust, easy to use and explain, and give sufficiently
reproducible results while allowing a quick optimization useful for designing a new
setup. This chapter presents results of simulations that predict the performance
of the setup that is currently being constructed in our laboratory.

6.1 An overview of the constructed experimental setup

We have devoted this chapter to describing a novel experimental setup for creat-
ing KAg and CsAg molecules. Based on the constraints imposed by the design
choices, we identified the relevant parameters for the simulation and derived their
optimized values. The beam radius, ellipticity, and shift in the z-axis have been
defined as in Section 5.1.1. The size of the orifice of the effusion cell is described
by bx and by. We have introduced the total available power of laser beams Ptotal
and the ratio ζ = P2D/Ptotal, which characterizes how much of total available
power is directed to the 2D MOT. This will allow us to optimize the power of each
beam and, at the same time, the total power used for the system.

6.1.1 Vacuum system

The vacuum system shown in Fig. 12 comprises three main sections. The 2D
MOT chamber for silver is based on a 6-way stainless steel cross that has four
7.6 cm diameter windows for laser cooling beams. The windows are relatively
large, so they do not restrict the size of the cooling beam. The dimensions of
the cross restrict the possible location and size of the source of silver atoms, but
the chosen design is useful to minimize the possibility of coating the windows
with the beam of atomic silver. The source of silver, a crucible filled with silver
pellets, should be located as close to the 2D MOT axis as possible to guarantee a
high flux of emitted atoms even when operated at a (relatively) low temperature
(which would still be on the order of 900 ◦C). Due to restrictions imposed by
the geometry of the cooling beams, the source cannot be closer to the 2D MOT
axis than approximately

√
2×(cooling beam radius). It also places constraints on

the size of its orifice in the plane of the beams. The size of the pupil in the y
direction,by, can only be twice the distance from the beam overlap. Taking into
account the dimensions of the chamber and the possible size of the beam, we have
established the limit at 25 mm. We set the same limit for the size of the orifice
in y-axis bx. It is not constrained but we do not expect it to be larger than the
width of the beam in the major axis of the ellipse. This chamber is pumped with
an ion pump to ensure ultra-high vacuum conditions and is separated from the
main chamber with a gate valve. An additional window on the very left of the
chamber is used to insert the push beam for the silver 2D MOT.
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Figure 12: Rendering of the vacuum system of the constructed setup. Courtesy
of dr Mariusz Semczuk.

The custom-made titanium alloy main chamber, where the actual experiments
will take place, was intentionally designed to be small to ensure that the magnetic
coils could be placed as close to each other as possible, here at 30 mm separation.
This reduces the requirements for the current required to generate the magnetic
fields needed for the experiment. As a result of this design choice, the diameter
of the cooling beams for the 3D MOT cannot exceed 20 mm. The location of the
trapped atoms is 21 cm away from the silver 2D MOT and 35 cm from the K/Cs
2D MOT.

Finally, the third chamber on the right is based on a glass cell and houses
a dual-species (K+Cs) 2D MOT. With the glass cell, magnetic coils can be po-
sitioned closer to its symmetry axis, making it easier to achieve high magnetic
field gradients. The glass cell can be used for alkali atoms because they are easily
evaporated, and if stuck to the glass surface, they can be desorbed with UV-LED
light. Here, atoms are loaded directly from the background gas.

All chambers are separated with differential pumping tubes to ensure that a
pressure on the order of 10−11 mbar can be reached in the main chamber.

6.1.2 Laser systems

We have established the geometrical constraints of the system. We need to now
establish the limits for parameters of the cooling lasers and the magnetic field.
For caesium and potassium, existing laser systems will be used [62, 63]. The laser
system for silver, briefly discussed below, is more of an unknown because it is cur-
rently under construction and we can only estimate what powers will be available.
The first constraint we put on the 3D MOT is the same beam size for each species,
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but this is mainly for convenience - in the actual experiment it makes it a little
easier to align the beams if they are roughly the same size. Another one is that
the magnetic field of the 3D MOT has to be the same for trapping all considered
species because silver and one of the alkali species will be trapped simultaneously
in the 3D MOT. It is a fairly established approach in many experiments with
ultracold mixtures. Based on these considerations, we identified the boundaries
(see Tab. 16) for the experimental parameters that will be optimized in this work.

Table 16: Limits set for the parameters before optimising them.

Parameters Notation Ag K & Cs
Total power Ptotal [mW] 300 300

Ratio P2D/Ptotal ζ [0.6, 1.0] [0.1, 1.0]
Ellipticity ϵ [0.5, 1.0] [0.5, 1.0]
Detuning δ [Γ] [−5.2, −2.2] [−6, −3]

Push beam power P+ [mW] [0, 2] [0, 2]
Push beam radius R+ [mm] [12, 18] [12, 18]

2D MOT beam radius R2D [mm] [12, 18] [12, 18]
Shift in z-axis between traps ∆z [mm] [0, 5] [0, 5]

Pupil size in x-axis bx [mm] [0.5, 25.0] —
Pupil size in y-axis by [mm] [0.5, 25.0] —

Magnetic gradient of 2D MOT ∆B2D [G/cm] [10.0, 60.0] [1.0, 20.0]
Magnetic gradient of 3D MOT ∆B3D [G/cm] [1.0, 20.0] 8.5

For laser cooling of silver, a laser source at 328 nm is needed. Direct sources
are not available at this wavelength. The approach we have chosen relies on two
high-power fiber amplifiers emitting at 1120 nm and 1584 nm. These beams are
then combined in a non-linear crystal to generate 5 W of 656 nm light via sum
frequency generation. Finally, a second-harmonic generation cavity is used to
convert the 656 nm light into 328 nm light. The expected output in UV should
be around 1 W. In order to ensure that the radiation is precisely at the desired
frequency, we will implement frequency stabilization methods. The frequency of
the light provided by fiber amplifiers is very stable, therefore we assume that
initially we will monitor the 656 nm light with a wavemeter and use it to correct
the frequency of the 1120 nm laser to make sure that the frequency of the 328 nm
does not change. To improve frequency stability, we plan to use molecular iodine,
which has a transition at a frequency ≈ 600 MHz away from the required frequency
of the 656 nm light. The spectroscopic signal will be used to correct the frequency
of the 1120 nm laser. Both of these approaches rely on the good passive frequency
stability of the 1584 nm laser.

Ultimately, the 328 nm light will be frequency-stabilized using an optical fre-
quency comb. A beatnote between the comb and the 1120 nm as well as the
1584 nm laser will be stabilized, therefore providing absolute frequency determi-
nation in the UV. This relies on the fact that we can represent the frequency of
each fundamental laser by comparing it to a frequency comb with the repetition
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frequency frep and the carrier envelope offset frequency fCEO as:
f1 = n1frep + fCEO + fbeat,1

f2 = n2frep + fCEO + fbeat,2,
(6.1)

where indices 1 and 2 refer the 1120 nm and 1584 nm lasers, respectively. Here,
ni is the number of tooth to which the lasers are locked and fbeat,i is the beatnote
between the laser and the comb tooth ni. The frequency f3 of the 656 nm light
can be expressed as:

f3 = f1 + f2 = n1frep + fCEO + fbeat,1 + n2frep + fCEO + fbeat,2

= nfrep + 2fCEO + (fbeat,1 + fbeat,2),
(6.2)

where n = n1 + n2. It is now sufficient to determine n based only on the
readout of the frequency fWM

3 of the 656 nm source with a wavemeter:

[n2] = fWM
3 − 2fCEO − (fbeat,1 + fbeat,2)

frep
. (6.3)

Due to the presence of hyperfine splitting in the ground state of silver, to have
control over the laser cooling process, we need to derive both the cooling and the
repumping beams from the stabilized laser source. For this purpose, we will use
an electro-optic modulator (EOM) such that the carrier will be the cooling beam
(≈ 40% of power) and the +1 sideband (≈ 30% of power) will be the repumping
beam. The -1 sideband will be sufficiently far detuned from any transitions to not
cause any issues during the cooling process. Additional frequency shifts will be
introduced by acousto-optic modulators (AOM) in a double-pass configuration.
These will be needed to provide frequency tuning capability. They will also act
as both fast shutters and laser power regulators. For an optimized AOM, the
typical diffraction efficiency is ≈ 80%, with ≈ 60% total efficiency expected in a
double-pass configuration. Ultimately, neglecting all other losses, we would expect
at most 450 mW of total UV power to be available for the experiment. As these
are only provisional estimations, for the purpose of the simulation we decided to
assume that the total power would not exceed 300 mW.

Figure 13: Scheme of the laser system. Courtesy of dr Mariusz Semczuk.

6.2 Results of the simulations of the designed system

With the provided scheme and the established limits, we have written 3 simulation
scripts for every atomic species. The general layout was presented in the previous
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chapter. We used them to optimize the system parameters by Bayesian optimiza-
tion. With the new values, we have simulated the trajectories and characterized
the setup. The caesium script has been presented in Section 4.3 as an example
of our simulation. Because potassium has similar physical properties to caesium
and the 2D MOT is also loaded from the background gas at room temperature,
its segment ultimately has the same simulation layout, but with different values
of the parameters specific to a given atom. Due to the fact that there are up to
twelve changeable variables, we decided to optimize four at a time, which allowed
more control over the process. The exemplary calculation shown in Fig. 4 took
seven hours and returned optimized values for the radius and the power of the
push beam, the ellipticity of the cooling beams, and the shift in the Z axis.

Table 17: Final values of optimised parameters for every part of the system.

Parameters Cs K Ag
Psum [mW] 300 300 300

ζ 0.65 0.51 0.83
ϵ 0.84 0.94 0.56

δ [Γ] −4.86 −5.48 −2.72
P+ [mW] 0.89 0.51 0.49
R+ [mm] 1.4 1.95 1.62
R2D [mm] 5.5x3.0 18.4x6.3 12.4x10.3
R3D [mm] 7.5 7.5 7.5
∆z [mm] 1.5 1.5 2.0

∆B2D [G/cm] 8.34 3.94 12.89
∆B3D [G/cm] 8.5 8.5 8.5

The silver segment was simulated with an analogous script. Since the atomic
source is an effusion cell, only one oven entity was created and placed directly
below the crossed beams. This differs from the previously discussed design, where
the crucible was on the side of a beam parallel to the Z axis. Nevertheless, it
is essentially the same, since the atom’s velocity is much higher than the differ-
ences acquired from the gravitational force. In the simulation, we set the distance
between the oven and the MOT to be 15 mm. Such a number was set by as-
suming R2D = 8 mm and ϵ = 0.67 (initial values before optimisation) and adding
additional safe space. The closer to the trap we will place the higher the flux.
After optimisation, the minimal value for this distance is 14.54 mm which means
that the crucible will have to be moved further away to fit not only its orifice but
also its body. The size of the crucible’s pupil was additionally optimised and we
allowed for an elongated shape. An elongated oven output would resemble the
shape of the cooling volume increasing the flux from the 2D MOT. In the simu-
lation, we have also added a SimulationVolume that will hold the oven and the
space leading to the trap. When considering the layout for silver we performed a
simulation where we simply inserted the crucible close to the 3D MOT. It didn’t
yield better results.
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(a) .

(b) (c)

Figure 14: Visualisation of atoms in the cooling system for caesium. The blue
ellipsoid represents where the Zeeman shift is equal to the detuning of the laser,
the red ellipsoid shows the laser cooling volume with the 1/e2 radius, the orange
shows the push beam and the grey, the differential pumping tube. The system is
shown from three perspectives: a) full view, b) 2D MOT close-up, c) 3D MOT
close-up.

We simulated and characterised each part of the system for the new parame-
ters noted in Tab. 17. Velocity distribution at a position before the 3D MOT is
presented in Fig. 15. It includes only the atoms caught by the 3D MOT. They
have consistently a Gaussian distribution. From the fitted Gaussian function we
have obtained the mean velocity µ and the standard deviation σ. It was used
to calculate the capture velocity as vc = µ + 2σ, presented in Tab. 18. Velocity
distribution for caesium is comparable to the one of proof-of-concept simulation.
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(a)

(b)

(c)

Figure 15: Velocity distribution of an atomic beam before 3D MOT, with a Gaus-
sian fit, for a) caesium, b) potassium, and c) silver atoms.

In Fig. 14 we present three stages of the atomic movement in the system. In
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Fig. 14b we present the atomic cloud attracted towards the centre through the
trapping volume of the magnetic field (blue ellipsoid). Since the velocity in the
X-axis is not limited they escape from both sides. Atoms pushed to the very centre
encounter the push beam causing them to travel through the differential pumping
tube. Atoms pushed by the beam travel between the 2D MOT and 3D MOT. The
gravitational force causes a shift in the Z position which was accounted for in the
design. This shift stops interaction with the push beam. In Fig. 14c we can see
a 3D MOT trapping the atoms. Those stages are also resembled in the velocity
change shown in Fig. 16. First, it decreases and fluctuates when trapped in 2D
MOT, then the velocity increases with the acceleration of the push beam. We see
a plateau when the atoms fall away from the laser light. When they enter the
3D MOT they experience a small velocity jump when it is attracted to the centre
and then a sudden decrease due to the cooling. After small fluctuations due to
position changes around the centre they are cooled completely.

Figure 16: Absolute velocity of caesium atoms through time that has been trapped.
For clarity, we have outlined 5% of all atoms.

We have calculated the trapping rate for each layout. For caesium, flux is
of the order represented in the documented experiment [22] but since we don’t
include the desorption of the caesium atoms from the walls we can expect a one-
order increase as it was the case for [22]. If we calculate the efficiency of trapping
as defined in [22] we obtain 0.86% which is 100x more efficient than the previous
trap. Because the trap is much smaller it results in a similar flux but much higher
efficiency. It’s a consequence of optimising the trap based on its efficiency not on
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the outgoing flux or trapping rate. We will further explore this scheme widening
the trap and performing optimisation using trapping rate as score.

Table 18: Calculated values obtained from the simulation for potassium, caesium,
and silver segments.

Cs K Ag
L [atoms/s] 5.95 · 107 1.87 · 1010 3.12 · 1010

Φ2D [atoms/s] 6.21 · 107 1.89 · 1010 7.30 · 1010

vc [m/s] 17.45 25.56 12.16
α 7.0 · 10−5 5.6 · 10−5 1.9 · 10−5

The potassium system was estimated to have the same order trapping rate as
the known source [21] (since only 2D+MOT was analysed by the other group we
assume 100% trapping efficiency between 2D+ and 3D MOT). We can presume
that when the second laser cooling wavelength is implemented the trapping rate
will grow. As for silver, we saw a great improvement compared with the setup of
Gerald Uhlenberg [25]. With growing new laser technologies we have 200 times
more output power than 20 years ago. This allowed us to use a 2D+ 3D MOT
scheme, which as we can see, traps atoms more efficiently. We do not have a clear
picture of how big collision losses will be but we can presume, with such a good
estimated value, the trapping rate will be substantial nevertheless.

6.3 Possible improvements

We have used three different programming languages to realise those calculations
and they were executed independently. In the future, we want to create a single
Matlab app. It will provide space for inserting each parameter, it will visualise
the system so that it will be easier to design it, and, when ready, it will execute
Rust AtomECS software to calculate the trajectories. Then it will calculate the
evaluation parameters, like flux or trapping rate, and provide velocity distribution
at a selected plane. It will be easy to use and open to new users. The simulation
didn’t include collisions, which are computationally draining but could be imple-
mented with a specific exponent factor depending on time spent by atom in the
trap. Allowing a single simulation to have more than one transition used for laser
cooling would permit simulating the influence of the repump beam and discussing
bi-colour traps. We have created a script that would perform a simulation of a
system with MOTs of different colours. This should be evaluated by comparing it
with a well-documented experiment [64]. The final improvement would be to per-
form the Bayesian optimisation in terms of the final trapping rate not the trapping
efficiency of the system.
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7 Conclusion

In this work, we have successfully presented a program to simulate, characterise
and optimize a composite magneto-optical trap setup. Our base was AtomECS
software which we have modified to allow for more compound simulation. We
wrote an additional Python script for the analysis of trajectories of atoms ac-
cording to the established theoretical model and a Matlab script that optimised
parameters and visualised atoms in the system.

In order to show that our model performs no worse than the established so-
lutions we simulated three different documented experimental setups each that
worked with an atomic species of our interest, caesium, potassium and silver.
The original simulation for the experimental setup of a 2D+ 3D MOT used for
trapping and cooling 133Cs atoms [22] estimated the trapping rate to be 5(4) ·
107 [atoms/s]. We estimated it as 0.618(5) · 107 [atoms/s] which is 1.1 stan-
dard deviation away making it not statistically different. For this setup, we also
showed agreement for trapping efficiency, and capture velocity. For a 2D MOT
that was a source of cold 39K atoms [21], the original simulation estimated the
flux to be 8.7 · 1010 [atoms/s] which was an order larger than what we have cal-
culated 2.5(5) · 109 [atoms/s]. We explained this discrepancy as a loss due to the
simulation of only one cooling frequency out of two that were used in the original
experiment.

We successfully simulated a system that is currently in construction. It is de-
signed to create weakly bound molecules of KAg and CsAg. The design consists
of two 2D magneto-optical traps and one common 3D MOT. We have performed
simulations for every atomic species and calculated the trapping rate, trapping ef-
ficiency, capture velocity, and flux before the 3D MOT. We have optimised the sys-
tem’s parameters for the highest possible trapping efficiency. The final calculated
trapping rate was LCs = 5.95·107 [atoms/s] for caesium, LK = 1.87·1010 [atoms/s]
for potassium, and LAg = 3.12 · 1010 [atoms/s] for silver. Each trapping rate
was bigger or comparable to the values achieved in the documented experiments.
Especially the segment for cooling silver atoms provided much higher trapping
rate than what was observed in the documented experiment. We also proposed
improvements to the code, enabling the simultaneous simulation of traps with
different frequencies, and making the software more user-friendly and accessible.

Appendix A

The full script of the simulation program is available on GitHub

https://github.com/MichalMaryn/MOT-simulation.git.
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