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Summary

The thesis describes the theory and construction of a laser frequency stabilization system
employing a transfer interferometer to maintain the stability of slave lasers relative to a ref-
erence laser. This approach enables precise frequency stabilization of multiple lasers without
relying on atomic or molecular transitions as a reference. Furthermore, its implementation is
straightforward, utilizing readily available components.

The system is based on a Mach-Zehnder interferometer with a mirror mounted on a piezo-
electric transducer (PZT) which is driven by a ramp signal generated by a digital-to-analog
converter controlled by Raspberry Pi 4B. By altering the optical path length difference, inter-
ferometric signals are produced, which are subsequently digitized using an analog-to-digital
converter. The extracted phases of these signals can then be compared to the phase of the
reference laser signal. Based on this comparison, the microcontroller computes the necessary
frequency corrections for the slave lasers, yielding an error signal that can be applied as a
feedback to the controllers of these lasers.

To test the constructed setup, an 852 nm laser was used as a slave laser and a 767 nm
laser, frequency stabilized to an atomic transition in potassium, served as a reference. The
interferometric signal generated in the setup had variable periodicity, most likely caused by
a slightly non-linear behaviour of the PZT. Introducing an empirical functional form of the
response of the PZT to the applied voltage made it possible to extract the phase of the signal
from the interferometric data - at a cost of increased computational complexity.
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Chapter 1

Introduction

Lasers have found extensive applications in modern science and technology. They are indis-
pensable in various fields, including telecommunications, analytical spectroscopy, pollution
monitoring, medicine, manufacturing or research. However, to fully harness their capabilities,
ensuring the long term stability of their frequency is crucial. Numerous factors like temper-
ature, humidity or pressure variations, as well as mechanical vibrations can cause frequency
fluctuations and frequency drifts of the emitted light. Therefore it is important to monitor
the frequency and compensate its changes.

1.1. Stabilizing frequency to atomic or molecular transitions

One of the most widely adopted techniques makes use of characteristic atomic [1] or molecu-
lar [2] transitions that serve as references to which laser frequencies can be compared. They
offer exceptional stability and exhibit narrow linewidths, allowing for simultaneous locking of
multiple lasers to distinct transitions. To compare a laser frequency with the reference, the
laser light is passed through a cell containing a desirable gas that absorbs photons with a
frequency equal to that of the transition. The transmitted light is measured by a photodiode,
and the closer the laser frequency is to the atomic resonance, the lower the measured intensity
is. However, because of the thermal motion of atoms, the Doppler effect is present, so the
resonance frequency is dependent on velocities of atoms and thus the absorption occurs over
a broader range of frequencies, which lowers the lock precision. To address the problem, the
method is modified by splitting the beam into a probe beam directly passing the cell and
a stronger pump beam that travels in the opposite direction through the cell so it interacts
with atoms moving at opposite velocities with respect to those interacting with the first beam.
When the laser is nearly on resonance, both beams resonate with the same group of atoms
and the absorption of the probe beam is reduced due to the population of atoms in excited
state. As a result, absorption dips are observed at atomic transitions in the transmission
spectrum. The described technique is called Doppler-free spectroscopy [3].

Unfortunately, atomic or molecular spectra consist of a finite selection of suitable transi-
tions and thus available frequency references. To overcome this limitation, adjustments can be
made by modifying the laser frequency using an appropriate frequency modulator, effectively
shifting it into alignment with the desired reference. Another solution may be combining of
the beam from a master laser that has already been stabilized to an atomic or molecular
reference with that of another laser and stabilizing the resultant beat frequency. In both
cases the shift is typically up to several tens of GHz which might not be sufficient in certain
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situations.

1.2. Fabry–Pérot cavity

An alternative technique is called the Pound-Drever-Hall (PDH) method [4, 5]. A schematic
of a typical experimental setup is shown in Fig. 1.1. The method utilizes FM (frequency
modulation) spectroscopy [6]. The laser beam’s phase is modulated using an electro-optic
modulator driven by a sinusoidal signal from an RF oscillator. It introduces sidebands around
the laser central frequency (a carrier component). Then it is directed into an optical cavity,
in this case a Fabry–Pérot interferometer (FPI) [7] that consists of two highly reflecting
mirrors. When light enters the cavity, it undergoes multiple reflections between the two
mirrors. The cavity is set up in such a way that only specific wavelengths of light satisfy
the resonance condition. The constructive interference occurs when the round-trip distance
(2L) between the mirrors is an integer multiple of the wavelength λ of the light: 2L = mλ.
Some part of the light leaves the cavity and together with the light reflected from the cavity
is measured by a photodetector. The signal consists of the two unaltered side bands and a
carrier component shifted in phase. Then it is mixed with the RF oscillator synchronized
with the light modulation phase and appropriately filtered to serve as an error signal that is
fed to a PID controller which adjusts the laser frequency.

Figure 1.1: The Pound-Drever-Hall method schematic (by Kondephy - Own work, CC BY-SA
4.0, https://commons.wikimedia.org/w/index.php?curid=53790278)

The method is very sensitive to small frequency shifts, thus it is highly precise. In contrast
to locking to atomic resonances, it offers more flexibility as it allows for the stabilization to
arbitrary frequencies within the tuning range of the laser and the resonance characteristics of
the optical cavity. However, the setup is relatively complex and greatly sensitive to environ-
mental factors like temperature or pressure variations and mechanical vibrations. There are
some solutions that can eliminate the problems, for example the Fabry–Pérot cavity can be
made from an ultra-low expansion (ULE) glass (e.g. Zerodur) that is known for its exception-
ally low coefficient of thermal expansion in the vicinity of a characteristic temperature [8].
Also, the setup can be closed in a box to isolate it from the environment.

There exists another approach [9] utilizing a Fabry–Pérot cavity. It transfers the stability
of a master laser to multiple slave lasers. The reference laser can be stabilized to one of
the frequencies of the FPI as it has been discussed above. Then we can use another cavity
whose one mirror is attached to a piezo-electric transducer (PZT), which can scan the length
between the mirrors and thus change the characteristic frequencies of the setup. It can be
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locked to the frequency of the reference laser that is sent to the cavity. It is done by observing
the transmitted signal and moving the mirror to a position, for which the laser frequency
corresponds to one of the resonance frequencies of the cavity, which manifests in the maximum
transmission. Then a few other lasers can be simultaneously stabilized to a given frequency of
such a regulated cavity. It eliminates the problem with the drifts of the cavity length caused
by the environment.

1.3. Mach-Zehnder interferometer

There is yet another, a bit easier, possibility that is deeply discussed in the thesis. In the
paper from the University of Toronto [10] a transfer interferometer was utilized to convey the
frequency stability of an already well stabilized (e.g. using a proper atomic resonance refer-
ence) reference laser (also called a master laser) to multiple slave lasers. The setup schematic
from the article is presented in figure 1.2. They used a Mach-Zehnder interferometer built
from two 50:50 beam splitter cubes (BS) and a single mirror attached to a piezoelectric trans-
ducer (PZT) that is driven by a ramp signal generated by a digital-to-analog converter (DAC)
controlled by an Arduino-compatible microcontroller (Digilent uC32). The displacement of
the mirror introduces a phase shift in the longer path and thus it results in interferometric
signals measured by two photodetectors after separating the beams using a dichroic mirror.

Figure 1.2: A transfer interferometer setup for slave laser frequency stabilization using a
stabilized master laser as a reference. BS – beam splitter cube, PZT – piezoelectric

transducer, DM – dichroic mirror, PD – photodetector, PI –proportional-integral controller
(source: [10])

Then the signals are digitalized by an analog-to-digital converter (ADC), sent to the micro-
controller and analysed by fitting sine functions to them and extracting their phases. It turns
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out that the difference of these phases is proportional to the frequency deviation, so it may
serve as an error signal that is subsequently fed into a proportional-integral (PI) controller
implemented in the software and sent to slave lasers’ controllers to correct the frequency by
manipulating the current. Also, the reference laser phase is stabilized to maintain a con-
stant interferometer length and therefore compensate effects of thermal drifts. It is done by
comparing the current phase with the set one and adding some offset to the ramp signal to
regulate the average position of the mirror at the PZT.

This approach is relatively simple and cheap in contrast to the other methods presented
before primarily because it does not require expensive, high-reflectivity mirrors, only compo-
nents available in every optical laboratory. Moreover, it was reported to allow for frequency
stabilization better than 1 MHz [10].

1.4. Motivation

The Quantum Gases Laboratory, led by Dr. Mariusz Semczuk, is currently constructing an
experiment aimed at producing a mixture of silver with potassium and cesium. It can possibly
allow to generate ultracold molecules with an enormous dipole moment [11]. However, to
create a magneto-optical trap for silver, light with a wavelength of 328 nm is required [12].
Unfortunately, currently there are no lasers with such a wavelength that have spectrum narrow
enough, are stable, tunable, and of sufficient power. Therefore, a proposed solution is to
generate this specific wavelength through a process known as second harmonic generation
(SHG) that effectively halves the wavelength of 656 nm. To obtain the 656 nm wavelength,
a sum frequency generation (SFG) process is considered, combining the wavelengths of lasers
at 1114 nm and 1596 nm. The schematic of the idea is shown in Fig. 1.3.

Figure 1.3: In order to get laser light of wavelength 328 nm, two wavelengths, 1114 nm and
1596 nm, are combined to produce 656 nm light, which is then doubled in frequency, resulting
in a 328 nm wavelength. SHG – second harmonic generation, SFG – sum frequency generation.

However, the frequency stabilization of these lasers poses a challenge. Traditional methods,
such as relying on atomic or molecular transitions, are not applicable in this context, as in
the vicinity of these wavelengths there are no well-established atomic or molecular frequency
references. Therefore, alternative approaches are being considered. One of them is to stabilize
one of these lasers to the frequency comb and then employ a Mach-Zehnder interferometer to
transfer the frequency stability from that laser to the second one. We can also use the light
of 656 nm wavelength as an input to the M-Z interferometer and send the error signal to one
of these lasers while the other one is stabilized to the frequency comb. Last but not least, the
spectroscopy of silver atoms may be performed using the 328 nm light.

6



Chapter 2

Theoretical background

In contrast to the interferometer presented in the research paper [10] that I rely on, previ-
ously shown in Fig. 1.2, ordinary non-polarizing beam splitter cubes (BS) were replaced with
polarizing beam splitter cubes (PBS). BS transmits only a fraction of incident light power,
regardless of polarization, and the rest is reflected. In the case of the paper that I men-
tioned the BS transmitted and reflected 50% respectively. However, PBS transmits only the
p-polarization (from the German parallel – parallel to the plane of incidence) and reflects
the s-polarization (from the German senkrecht – perpendicular to the plane of incidence), as
shown in Fig. 2.1, so not only it works as a beam splitter but also as a linear polarizer.

Figure 2.1: The principle of operation of a polarizing beam splitter. In an ideal case the
p-polarized component (green lines) is fully transmitted and the s-polarized one (blue lines)
is fully reflected.

In order to achieve the 50:50 beam splitting functionality in a PBS, it is necessary to use a
linearly polarized light and a half-wave plate (HWP) set at an appriopriate angle and inserted
just before the PBS. A half-wave plate is made of a birefringent material which has different
refractive indices for light polarized along two orthogonal axes called "fast" and "slow". When
linearly polarized light enters a half-wave plate, the two orthogonal polarization components,
one aligned with the fast axis and the other with the slow axis, experience different refractive
indices. As a result, they travel at different speeds through the material. In the case of a
half-wave plate it introduces a phase shift of half a wavelength or π rad between the two
polarization components, as shown in Fig. 2.2. As it can be seen, if the incident beam
is linearly polarized at an angle α with respect to the slow axis or β to the fast axis, it
effectively rotates the polarization by 2α clockwise or 2β anticlockwise. To visualise it, the
linear polarization with its characteristic components were drawn in two points of maximum
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amplitudes just after light passes the HWP.

Figure 2.2: A half-wave plate introduces a phase difference of π rad between polarization
components along orthogonal "fast" and "slow" axes. The blue arrows symbolize linear po-
larization of light that passes the half-wave plate. The magenta arrows are the "fast" and
"slow" components of the linear polarization. On the right, it has been placed in a coordinate
system where x is along p-polarization (horizontal), and y along s-polarization (vertical).

Mathematically, the operation of a half-wave plate can be described using Jones calcu-

lus [13]. Let
[
1
0

]
represent the p-polarization and

[
0
1

]
the s-polarization. Then assuming the

HWP is oriented at an angle of θ with respect to the horizontal direction denoted as x, such
as in the right image in Fig. 2.2, we can write down the following Jones matrix:

JHWP (θ) =

[
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

]
(2.1)

To obtain a 50:50 PBS operation and if incident light is p-polarized, one has to rotate the
half-wave plate, such that the fast or slow axis is oriented at 22.5o angle with respect to the
polarization direction. Then p and s components are equal after passing the HWP and the
PBS transmits and reflects beams of equal powers:

JHWP (22.5
o)

[
1
0

]
=

1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
(2.2)

Having that in mind let’s analyse a simplified schematic of a triangular Mach-Zehnder
interferometer shown in Fig. 2.3. A laser beam typically is already linearly polarized. To
regulate its power one can rotate the HWP placed before the PBS. As it was discussed above,
it rotates the polarization changing s and p components’ intensities. Moreover, it ensures the
p-polarization of transmitted light which then can be rotated by another HWP oriented such
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that the next PBS transmits and reflects equal-power beams and thus behaves like a 50:50 BS.

Figure 2.3: A simplified schematic of a triangular Mach-Zehnder interferometer. PBS –
polarizing beam splitter cube, M – mirror, PZT – piezo-electric transducer, PD – photodiode.
Half-wave plates are denoted as λ

2 .

There is yet another PBS. They are both slightly rotated. Light traverses two distinct
paths. The short one goes straight through both PBS cubes. The second one reflects twice
at the PBS cubes and once at the mirror mounted on a piezoelectric actuator (PZT) that is
driven by a sawtooth signal and dynamically alters the path length over time. At the output
the beams are shifted in phase by a constant ∆ϕ0 resulting from a fixed difference in the
optical path length ∆Lo between the two paths, phase changes caused by reflections at the
mirror and PBS cubes, and a varying mirror displacement ∆x(V ) dependent on the voltage
supplied to the PZT. Let’s assume ∆x(V ) is much smaller than the path length, so that the
overall path change can be approximated by 2∆x(V ). In the result the relative phase shift is:

∆ϕ = ∆ϕo − 2k∆x(V ), (2.3)

where k – wave number.

The beams meet again at the output of the second PBS that transmits all the light
traversing the short path as it is only p-polarized, and reflects light traveling the long path,
which is s-polarized. At the output the beams are orthogonally polarized and can’t inter-
fere with each other. That’s why a linear polarizer is used to ensure the same polarization
states. Maximum intensity can be obtained when it is oriented at 45o or right between p and
s polarizations. Alternatively, PBS with HWP before it can be used, because PBS ensures
p-polarized transmitted light and HWP together with the PBS can regulate the output power.

Let’s assume the half-wave plate at the input is oriented such that the p and s polarization

components are the same. We can describe it by a Jones vector [13]: 1√
2

[
1
1

]
. For a half-

wave plate with fast axis at angle θ = 22.5o with respect to the horizontal axis (Fig. 2.2) the
following Jones matrix describes its influence on the polarization:

9



JHWP (22.5
o) =

1√
2

[
1 1
1 −1

]
(2.4)

Since only the p-polarized component is transmitted by a PBS, at the output, before the

linear polarizer, a Jones vector for the shorter path is: 1√
2

[
1
0

]
. For the longer path it is:

1√
2

[
0

ei∆ϕ

]
as the s-polarization is reflected only and there is the relative phase difference.

For a linear polarizer with transmission axis at an angle θ to the horizontal axis the
following Jones matrix is given:

JLP (θ) =

[
cos2θ cosθsinθ

cosθsinθ sin2θ

]
(2.5)

When θ = 45o, then it is:

JLP (45
o) =

1

2

[
1 1
1 1

]
(2.6)

The overall result of the phase change and passing through the linear polarizer angled at
45o can be calculated as follows:

Jout(∆ϕ) =
1

2

[
1 1
1 1

]
· 1√

2

[
1

ei∆ϕ

]
=

ei
∆ϕ
2

√
2

[
cos∆ϕ

2

cos∆ϕ
2

]
(2.7)

The intensity is proportional to the Jones vector module squared, so the output signal is:

Iout = Iincos
2(
∆ϕ

2
) (2.8)

For the future’s sake, let’s express the intensity 2.8 with a sine function using well-known
trigonometric identities:

Iout =
1

2
Iin +

1

2
Iinsin (2k∆x(V )−∆ϕ0) (2.9)

In reality, polarizing beam splitter cubes aren’t perfect and they transmit a bit of the
s-polarization or reflect some p-polarization. It may be so the intensity doesn’t completely
drop to zero and has some small offset.

In general:

I(∆x) = Asin(2k∆x+ φ) +B (2.10)

For low voltages, the PZT displacement can be approximated by a linear relationship.
Unfortunately, in order to observe full interference fringes, the signal amplitude should be of
the order of 100 V and that is not valid anymore. Based on the data, as it will be shown
later, the following exponential formula turns out to be a good approximation:

∆x(V ) = a ·
(
ebV − 1

)
(2.11)

It is evident that for small voltage, it exhibits a linear response as expected.

A ramp signal ranging from 0 V to Vmax and with frequency f = 1
T can be described by:
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V (t) =
2Vmax

T
t for t ∈ (0,

1

2
T) (2.12)

If one inserts it into 2.11, it results in:

∆x(t) = ∆xmax

(
ect − 1

)
, (2.13)

where c = 2Vmax · f .

Finally, the signal observed on the photodiode can be written as:

I(t) = Asin
(
wedt + ϕ

)
+B (2.14)

To assess the quality of interference signals a parameter called the fringe visibility [14] can
be calculated. It is defined by:

Vis =
Imax − Imin

Imax + Imin
(2.15)
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Chapter 3

Extracting phases and calculating the
error signal

In order to stabilize lasers using the presented interferometer, one has to find a proper error
signal that is proportional to the frequency deviation. It turns out it can be obtained from
phases of the master and slave lasers. However, they have to be somehow extracted from
interference signals. Assuming the PZT is perfect or at least approximately linear in a given
range of voltages, the signal is described by a sinusoid. An effective algorithm based on the
least squares method is proposed. Once the phases are known, the error based on these phases
can be computed and sent to a feedback loop to compensate slave laser frequency.

3.1. Error signal

Let’s consider first-order fluctuations of the phases of the reference (R) and slave (S) lasers’
beams caused by an infinitesimally small interferometer length change δL. If we assume that
the reference laser frequency is well-known (δkR = 0), then they are given by the following
equations:

δϕR = kRδL (3.1)

δϕS = LδkS + kSδL (3.2)

If we divide them by kR and kS respectively and subtract the first one from the second
one, we get:

e =
δϕS

kS
− δϕR

kR
= L · δfS

fS
∝ δfS (3.3)

The result is directly proportional to the slave laser frequency fluctuation and independent
of the changes of the path length difference or laser power variations. The calculated value
is a perfect candidate for the error signal. To minimize the frequency deviation one has to
minimize the error signal.

3.2. Phase extracting algorithm

Everytime the interferometer is scanned with the PZT, the Fast Fourier Transform (FFT) is
performed on the collected interference signal data and the peak frequency is found. Once
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the frequency is known, a three-parameter least square sine fitting algorithm [15] is applied.

A sine function can be decomposed into a sum of cosine, sine, and a constant terms:

yn = Asin(2πft+ ϕ) +B = A0cos(2πftn) +B0sin(2πftn) + C0 (3.4)

In order to fit the sine function to the collected data y1, y2, ..., yN at times t1, t2, ..., tN ,
the square sum of the differences between the measured values and the fitted ones must be
calculated and then minimized:

N∑
n=1

(yn −A0cos(2πftn)−B0sin(2πftn)− C0)
2 (3.5)

Now, matrix D has to be created as follows:

D =


cos(2πft1) sin(2πft1) 1
cos(2πft2) sin(2πft2) 1

...
...

...
cos(2πftN ) sin(2πftN ) 1

 (3.6)

Each consecutive matrix column contains cosine and sine functions calculated at all the
times and the last one has 1 in all rows. It is constructed in such a way that by multiplying the
matrix by s0 =

[
A0, B0, C0

]T consisting of the proper coefficients, we get an N-dimensional
vector y =

[
y1, y2, . . . , yN

]T representing the collected data.

The solution that minimizes 3.5 may be obtained by calculating the following vector:

ŝ0 =

Â0

B̂0

Ĉ0

 =
(
DTD

)−1 (
DT y

)
(3.7)

Now we can return to the original expression of the fitting function yn = Asin(2πftn +
φ) + C and see that the phase is given by:

ϕ = −arctan

(
B̂0

Â0

)
(3.8)

3.3. Feedback loop

As a feedback loop a Proportional-Integral-Derivative (PID) controller may be used. It is
designed to maintain a desired setpoint by continuously adjusting a control input based on
the error e(t) that is the difference of the setpoint and the current process variable, in this
case e(t) = δϕS(t)

kS
− δϕR(t)

kR
. The controller consists of three components:

1. Proportional (P) – it is proportional to the error.

P (t) = Kp · e(t)

where: Kp – proportional gain coefficient.

Its drawback is that it does not ensure zero error at the steady state.
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2. Integral (I) – it accounts for the accumulation of past errors over time. It eliminates
the steady-state error entirely when configured correctly.

I(t) = Ki ·
∫ t

0
e(τ) dτ

where: Ki – integral gain coefficient,

However, it makes the system respond more slowly to changes in error and may lead to
oscillations and overshoot if it accumulates too much error over time.

3. Derivative (D) – it accounts for the rate of change of the error. It dampens oscillations,
prevents overshooting and responds quickly to changes in error.

D(t) = Kd ·
de(t)

dt

where: Kd – derivative gain coefficient

Unfortunately, it is very sensitive to noise and can lead to instability of the system.

The schematic of the PID controller is shown in Fig. 3.1. In the case of the transfer
interferometer the actuator is a controller of a slave laser and the process is the calculation of
the differences between slave and master interference phases and that difference is the error,
which serves as a feedback.

Figure 3.1: PID schematic

The overall control signal of the PID controller is the sum of the proportional, integral,
and derivative terms:

u(t) = P (t) + I(t) +D(t)

To achieve the desired control performance, the PID controller gains (Kp, Ki, Kd) must
be appropriately tuned. Often P and I components are sufficient and there is no need for the
D component.

The PID controller may be implemented directly in the software or it can already be a part
of the hardware controlling a laser. In the second case, the program only needs to generate
e(t), which is sent to the device and appropriate gains are chosen within it.
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Chapter 4

Experimental procedure

The experimental setup consists of two parts: optical and electronic. The first one is a Mach-
Zehnder interferometer for generating interference signals for master and slave lasers. The
second one is used for controlling the length of the interferometer, digitizing obtained signals,
performing all required computations and generating error signal, which is used as a feedback
and sent to the controller of the laser that is being stabilized.

4.1. Optical setup

The experimental setup is shown in Fig. 4.1. Two lasers were used. The first one, later on
called master or reference laser, is Toptica PRO 767, an external-cavity diode laser (ECDL)
with diffraction grating, for which central wavelength of the diode was tuned around potas-
sium D2 transition (767 nm) and whose frequency was stabilized via sub-Doppler saturation
spectroscopy. The second one is PHOTODIGM PH852DBR TO-8 with central wavelength
tuned around cesium D2 transition (852 nm). It is controlled by Koheron CTL200.

The master laser beam is collimated by two plano-convex lenses with focal lengths 2 mm
(already in the collimator) and 50 mm. In order to regulate the beam power and ensure the
horizontal polarization, the beam passes through a half-wave plate and a PBS before it enters
the interferometer as it was discussed earlier. The slave laser beam traverses a similar path
but in this case there was no need to additionally collimate the beam.

In contrast to Fig. 2.3, two additional mirrors were added to reduce the area occupied by
the interferometer. The longer interferometer’s arm is 1 m long while the mirrors are 29 cm
away from the PBS cubes and 21 cm from the mirror at PZT. If it was set like in Fig. 2.3, the
mirror at the piezoelectric transducer (PZT) should be 50 cm away from the PBS cubes in
order to obtain the same arm length, so the interferometer would be nearly two times longer.
The PBS cubes are 4.5 cm away from each other, so the total path length difference is 95.5 cm.

The piezoelectric actuator is driven by a sawtooth signal generated by a digital-to-analog
converter controlled by Raspberry Pi 4B and then amplified by TEM-Messtechnik miniPiA 103.
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Figure 4.1: Experimental setup. PBS – polarizing beam splitter, PZT – piezo-electric trans-
ducer, PD – photodiode, λ

2 – a half-wave plate. The path length difference is about 1 m.

The photo of the real setup is shown in Fig. 4.2.

Figure 4.2: Photo of the interferometer.
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At the master laser interferometer’s output there is a linear polarizer rotated at 45o that
ensures the same polarization of both beams. It is crucial for interference to occur. Then
the beam is focused by a 50 mm plano-convex lens (Union Optics BK7) at the photodetector
(Thorlabs DET10A Si Biased Detector). The detected signal is observed on RIGOL DS1054
oscilloscope and also sent to the analog-to-digital converter. In the case of the slave laser
beam, PBS cube with HWP before it were used at the output to ensure the same polarization
of the beams, because there were no more available linear polarizers in the lab. It is also
focused by a plano-convex lens (f = 50 cm) at another photodetector of the same kind.

4.2. The microcontroller, analog-to-digital and digital-to-analog
converters

The microcontroller, Digilent uC32, used in the original paper, has been discontinued and is
no longer available in any store. Likewise with the analog shield, it is also unavailable. That’s
why new hardware had to be found. Basic versions of Arduino microcontrollers, like Uno
or Leonardo, have insufficient RAM. Possibly Arduino Due or Mega should be sufficient but
eventually Raspberry Pi 4B (RPi 4B) was chosen due to its vast computational capabilities.
The comparison of these two boards is presented in Tab. 4.1.

Table 4.1: Comparison of Raspberry Pi 4B and Digilent UC32 specifications

Specs Raspberry Pi 4B Digilent UC32
CPU Broadcom BCM2711 Microchip PIC32MX795F512L
CPU Clock Speed 1.8 GHz 80 MHz
Number of Cores 4 1
RAM 2GB 32 KB

In the case of the Rpi 4B CPU clock is nearly 23 times faster and it has 4 cores, each
supporting one thread. Also, there is nearly 63 times more RAM.

A digital-to-analog converter (DAC) that was chosen is the Adafruit MCP4728 [16]. It has
four 12-bit channels and communicates through the I2C interface (Inter-Integrated Circuit).
In the case of the analog-to-digital converter (ADC), it is the Texas Instruments ADS1256 [17].
It has eight single-ended or four differential 24-bit channels and uses SPI (Serial Peripheral
Interface).

The electronic setup for reading and generating the signals is presented in Fig. 4.3.
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Figure 4.3: Electronic system for reading data and generating signals. Raspberry Pi 4B
controlls digital-to-analog (MCP4728) and analog-to-digital (ADS1256) converters. The DAC
generates ramp signal driving the PZT, error signal correcting slave laser frequency and the
third channel is for monitoring fit parameters on the oscilloscope. The ADC reads interference
signals of master and slave lasers and digitizes them.

The first channel of the DAC is used to generate the ramp signal driving the PZT and
scanning the interferometer length. The second one provides the error signal correcting the
slave laser frequency and the third one can be used to check on the oscilloscope if the function
is properly fitted to the signal in real time.

The ADC channels were used in the differential mode. To eliminate periodic noises that
occured, the interferometric signals were measured using 1 kΩ resistors between the common
ground and positive nodes.

4.3. The code

The code is available online on GitHub [18]. The main program with all functionalities is
called transfer_interferometer_v3.cpp. The logic is based on the program in Arduino syn-
tax [19] used in the paper that I rely on.

In the first attempt the converters were programmed in Python but as they worked too
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slow, C++ was used instead. Initially, WiringPi library was chosen but it was deprecated
in 2019, so it has not been updated for the newest RPi 4B OS: Bullseye. While it worked
well for the DAC, there was an issue with the ADC because somehow the SPI communication
couldn’t be established. Eventually, the BCM2835 library [20] was used instead. Addition-
ally, for the ADC ready-made drivers [21] (BCM2835_Driver and ADS1256_Driver) were
used. Both converters worked as expected. However, as it turned out later, it also is not
dedicated for RPi 4B, because its CPU architecture is BCM2711 and the library was cre-
ated for BCM2835 archiecture present in older versions of RPi that had only 1 CPU core
and thus one thread. For a long time the author of this thesis was unaware of that fact
because, upon checking the CPU specifications in the terminal, it incorrectly showed up that
the architecture was BCM2835, while on the CPU chip on the board it is written "BCM2711".

The difference compared to the approach from the referenced work 1.2 is that all the oper-
ations are performed within a single code in C++ , whereas in the paper the microcontroller
sent prepared sine and cosine tables through serial communication to a computer, where the
D matrix was calculated in Python and then sent back to the microcontroller.

In the main infinite loop, there are two separate iterations, one for generating the rising
edge of the sawtooth signal and reading the interferometric signals, and the other one for
generating the falling edge. After the ramp up is done and the data has been collected, the
Fast Fourier Transform (FFT) algorithm is used to find the peak frequencies of the signals.
It is done by the function shown below:

1 double get_fit_freq(int array[], int arraySize , int SKIP_LEFT , int
STEPS_USE) {

2

3 int dataSize = STEPS_USE;
4

5 // FFTW setup
6 fftw_complex* in = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) *

dataSize);
7 fftw_complex* out = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) *

dataSize);
8 fftw_plan plan = fftw_plan_dft_1d(dataSize , in, out , FFTW_FORWARD ,

FFTW_ESTIMATE);
9

10 for (int i = 0; i < dataSize; ++i) {
11 in[i][0] = array[SKIP_LEFT + i];
12 in[i][1] = 0.0;
13 }
14

15 // Execute FFT
16 fftw_execute(plan);
17

18 double SampleRate = 1.0;
19

20 // Frequency bins
21 double* fft_freqs = new double[dataSize ];
22 for (int i = 0; i < dataSize; ++i) {
23 fft_freqs[i] = i * SampleRate / dataSize;
24 }
25

26 // The index of the maximum magnitude in the spectrum
27 int max_magnitude_index = 0;
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28 for (int i = 1; i < dataSize /2; ++i) {
29 if (abs(out[i][0]) > abs(out[max_magnitude_index ][0])) {
30 max_magnitude_index = i;
31 }
32 }
33

34 double peak_frequency = fft_freqs[max_magnitude_index ];
35

36 // Clean up FFTW resources
37 fftw_destroy_plan(plan);
38 fftw_free(in);
39 fftw_free(out);
40 delete [] fft_freqs;
41

42 return peak_frequency;
43 }

Listing 4.1: Function for finding fitting frequencies using the Fast Fourier Transform

In the code [19] that I relied on, the frequencies are not calculated by the program, instead
they are guessed at the very beginning of the code, before the main loop. Then they can be
again set by trial and error during the operation of the program. Here, a different approach
has been tried.

Once the frequency is known, the D matrix 3.6 is calculated. The following function is
responsible for that:

1 vector <float > get_fitting_matrix(int n_steps , float fit_freq , int
skip_left = 10, int skip_right = 10) {

2 // steps to use
3 int n_use = n_steps - skip_left - skip_right;
4

5 MatrixXf D(n_use , 3);
6 for (int i = skip_left; i < n_steps -skip_right; ++i) {
7 float time = static_cast <float >(i);
8 float theta = PI2 * time / n_steps * fit_freq;
9 D(i - skip_left , 0) = sin(theta);

10 D(i - skip_left , 1) = cos(theta);
11 D(i - skip_left , 2) = 1.0f;
12 }
13

14 MatrixXf DTD = D.transpose () * D;
15 MatrixXf compute_matrix = (DTD.inverse () * D.transpose ()).block(0, 0,

2, n_use);
16

17 vector <float > flattened_array (2 * n_steps , 0.0f);
18

19 for (int i = skip_left; i < n_steps - skip_right; ++i) {
20 flattened_array[i] = compute_matrix (0, i-skip_left);
21 flattened_array[n_steps + i] = compute_matrix (1, i-skip_left);
22 }
23

24 return flattened_array;
25 }

Listing 4.2: Function for calculating the D matrix
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Chapter 5

Measurements and results

A typical view of the interference fringes is shown in Fig. 5.1. In this case the ramp sig-
nal (yellow line) is generated by RIGOL DG4162 and then amplified by TEM-Messtechnik
miniPiA 103 (navy blue line). Light blue signal is the interference of the 767 nm laser and
the purple one originates from the 852 nm laser interference.

Figure 5.1: Interference signals seen on the oscilloscope. Yellow – ramp signal before the
amplification, navy blue – amplified ramp signal, light blue – interference fringes for the
potassium laser, purple – interference fringes for the cesium laser.

Fig. 5.2a and 5.2b show an interference signal when the PZT was driven by a 800 Hz ramp
signal ranging from 0 to 10 V before the amplification. It can be seen that the fringes are not
equally wide. Their width seems to decrease as the ramp voltage increases. To evaluate the
change, to each individual fringe a sine function was fitted. In Fig. 5.2a the sines were fitted
to four separate peaks of the signal (denoted as (a1) – (a4)) and in Fig. 5.2b to five valleys
((b1) – (b5)). The consecutive periods were plotted in Fig. 5.2c. They clearly decrease and
the rate of change decreases too. As it was discussed before, it is probably caused by the
hysteresis of the PZT displacement versus voltage relation. The PZT has been borrowed from
another lab, so the exact model name is unknown and its characteristic can’t be verified in a
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datasheet.

(a) (b)

(c)

Figure 5.2: (a) – (b) Interference fringes for a 767 nm laser generated by a ramp signal with a
frequency of 800 Hz and the voltage range 0 – 10 V (before the amplification). The visibility
is 87.8%. Sines were fitted to each separate fringe in two ways, in (a) to the peaks (dentoed
as a1, a2, a3, a4) and in (b) to the valleys (b1, b2, b3, b4, b5). The obtained periods for
individual fringes with error bars are presented in (c). Their decrease is evident.

There was also a problem that the amplifier couldn’t handle so high input voltage, which
caused overheating and the distortion of the signal after some time. Because of that, the volt-
age range had to be lowered to 7 V. Figures 5.3 represent a few more example signals. Their
widths were also estimated by fitting sines to the individual fringes. The obtained periods
have been plotted in Fig. 5.4. The results confirm that it is not a coincidence and in each
situation the period drops by about 10 - 13% between fringe 1 and 2, and by 5 - 6% between
2 and 3, so that is not a negligible effect.

Because of the non-linearity, it is impossible to fit one sine function to all the fringes within
a rising slope of the ramp. A solution might be limiting the range of the fit by skipping some
number of steps from the left and right. As it can be seen in Fig. 5.2c, for higher voltages,
fringe widths don’t change that much. Setting the fitting range to that region can be a good
idea. It has been tried using the sine fitting algorithm proposed in the section 3.2 and the
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results are showed in Fig. 5.5. This fit is not perfect but may be sufficient for calculating
differences in phases.

(a) Image 1
Visibility ≈ 87.4%

(b) Image 2
Visibility ≈ 87.5%

(c) Image 3
Visibility ≈ 87.1%

(d) Image 4
Visibility ≈ 87.1%

Figure 5.3: Output signals at the photodiode vs time for a ramp signal of the frequency of
800 Hz and voltage range 0 – 7 V. The visibilities are over 87% in each case. Sines were fitted
to each individual fringe (1), (2) and (3) separately.
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Figure 5.4: Widths of individual fringes (1), (2) and (3) obtained for signals in Images 1, 2,
3 and 4 in Fig. 5.3

Figure 5.5: Intensity vs index number of data points. The sine fitting range was decreased to
smaller number of points.

The other solution may be using the modified function 2.14 that has been discussed in
chapter 2, which assumes the PZT is non-linear and its response may be modeled by an
exponential function. Fig. 5.6 shows the result of fitting it to the potassium laser interference
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signal. The visibility is over 88.4% and adjusted R-square very close to 1. The function
appears to fit the data very well. It suggests the proposed model explains the origin of these
differences in periods.
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Figure 5.6: Least squares fit for the interference signal. The ramp signal’s frequency is 800 Hz
and the voltage ranges from 0 V to 7 V. Visibility ≈ 88.4%, Adj. R2 ≈ 0.9992.

However, fitting such a function is much more computationally intensive than the previous
algorithm for sine fitting. For example in Python its execution time for 400 points was about
9200 µs, while for the previous one it was ca. 700 µs for the same number of points, that is
over 13 times less. For precise laser frequency stabilization, the speed of the program is of
crucial importance, that is why the former method is preferred as its important advantage is
much better performance.

In order to be able to take control of the range of the signal that we want to fit the
sine to in real time and also compensate the temperature drifts, the generator had to be
replaced with the digital-to-analog converter. As Python is considered to be much easier than
C++, the converters were firstly programmed in that language. The DAC resolution is 12-
bit, so it can provide 4096 discrete output voltage levels. However, the maximum resolution
couldn’t be used because then the program was extremely slow and thus the signal frequency
was significantly too low. The frequency can’t be just set directly in the software as it is
dependent on the overall code’s efficiency and any additional delays that may be set between
individual steps by the user. In this case no extra delays were set, because even without them,
the program was not fast enough to ensure the desired frequency. Eventually, the resolution of
the ramp had to be lowered to increase the frequency. The most optimal solution turned out to
be 50 equal steps up and 20 down. If there was no falling slope, oscillations would be produced
and therefore disrupt the signal of interest. Moreover, the I2C clock speed was increased from
default 100 kHz to almost 1 MHz. The results are shown in Fig. 5.7. When only the ramp
signal was generated 5.7a (MCP4728_sawtooth.py), its frequency was 121 Hz. After adding
signal readings by the ADC in each subsequent iteration on the rising slope, the frequency
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dropped to just 15.6 Hz 5.7b. The code was modified by adding a queue for reading data
(converters_multithreading.py) and then the obtained frequency raised to 95 Hz as shown
in Fig. 5.7c. However, it was still insufficient to stabilize the laser with acceptable precision,
especially since the necessary operations for calculating phase differences, generating error
signal and PI control have not yet been added. It would substantially further slow down the
program.

(a) (b)

(c)

Figure 5.7: The comparison of python programs’ performances. Yellow – ramp signals gener-
ated by the DAC consisting of 50 voltage levels up and 20 down, blue – the signals after the
amplification. (a) When only the ramp signal was generated, its frequency was 121 Hz. (b)
After adding signal readings by the ADC in every step at the rising slope, the ramp signal’s
frequency dropped to 15.6 Hz. (c) Using a queue in Python to digitize the data, the frequency
substantially increased to 95 Hz.

For the above reasons, C++ language was chosen instead. The results for the same settings
are shown in Fig. 5.8. Unfortunately, when only generating the ramp (MCP4728_sawtooth.cc),
its frequency was 127 Hz, so very similar to that in Python. For the complete program (trans-
fer_interferometer_v3.cpp) with all the functionalities and necessary computations, the fre-
quency was only ca. 5 Hz, so way too low. It has also been tried to stretch the I2C clock speed
above 1 MHz. Then the ramp signal, when only generating it, was around 280 Hz. However,
it was less stable then and the frequency often jumped to lower values uncontrollably.
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(a) (b)

Figure 5.8: The comparison of C++ programs performances. (a) When only generating the
ramp signal, its frequency was 127 Hz. (b) The complete program for generating, reading,
analysing the signals from both lasers, calculating phases and implementing PI controllers
turned out to be very slow. The ramp frequency dropped to just 5.1 Hz.

The main program does not yet work as expected. There were many errors and most of
them has already been resolved, however when the phases were saved to a file in real time, they
showed up as NaN (not a number). As it was shown, the algorithm works well when applied
to the saved data from the oscilloscope. It does not however work properly incorporated to
the main program. The cause has not yet been found.
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Chapter 6

Conclusions

The visibility of the observed interference fringes exceeded 87%, which is a pretty good qual-
ity. According to the presented theory the interferometric signals should be sinusoidal, but it
turned out the period decreased as the applied voltage to the PZT increased. The model was
modified by assuming that the piezo-electric actuator is not perfectly linear and its response
may be approximated by an exponential function. It enabled to fit the function to a few
fringes with high precision and the adjusted R2 for that fit was very close to 1. Unfortunately,
this approach can’t be used for the phase extraction for laser stabilization purposes as it is
considerably slower and thus prevents achieving acceptable accuracy. However, the fitting
range can be changed in the software such that the sinusoidal relation sufficiently approxi-
mates the measured signal in the chosen range. Another solution might be trying to use other
piezo-electric transducers that exhibit less hysteresis and choose the best one.

As Python is a high-level language and does not allow for further optimization, C++ was
chosen instead because it is more efficient. Nevertheless, the performance of the code was still
very slow. In the case of only generating ramp signal without reading and analysing data,
there was not much difference with respect to the Python code. The DAC, that was used,
communicated with RPi using I2C interface which is capable of transmitting data up to 3.4
Mbps in the High-speed mode. Thus it was possible to increase the communication speed
above 1 MHz achieving ramp signal of frequency up to 280 Hz, however it was less stable and
the frequency fluctuated uncontrollably.

There is yet another kind of communication interface called SPI. Its speed may be up
to 60 Mbps. That is why using DAC communicating through SPI instead of I2C would be
greatly advisable. It should allow to generate signals of significantly higher frequencies and a
better resolution could be set. Moreover, the main code itself needs to be carefully analysed
and optimized, because the frequency of the ramp signal dropped below just 6 Hz when all
the operations were added. For comparison, in the paper that I based my research on, it was
reported that the ramp frequency of almost 200 Hz was achieved, even though two lasers were
stabilized simultaneously, as opposed to just one as in my code.

To speed up the code, parallel programming might be considered. The tasks could be
split into separate threads. RPi 4B supports four individual threads. However the way of
programming the converters should be changed as available libraries for SPI and I2C are based
on old CPU architecture that was present in previous versions of Raspberry Pi and supports
only one thread.
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Unfortunately, no laser has yet been stabilized using the developed system, because there
were a lot of time-consuming problems and bugs that had to be resolved and eventually there
has not been enough time left. However, the described troubles and possible solutions may
be helpful to resolve them in the future and make the code more efficient and flawless.

Using Raspberry Pi seemed like a good idea due to its robust specifications compared
to standard microcontrollers, but unfortunately, it posed many additional challenges. With
Arduino, ready-made libraries for many popular converters can be easily found and there is no
need to program them from scratch. However, many Arduino boards are not suitable for this
project because they have too little RAM and a too low CPU clock frequency. Nevertheless,
there are some exceptions that could be an alternative and replace the discontinued Digilent
uC32 microcontroller. These are for example Arduino Due and Mega, whose specifications
have been compared in Tab. 6.1.

Table 6.1: Comparison between Digilent uC32, Arduino Due and Arduino Mega specifications

Specs Digilent UC32 Arduino Due Arduino Mega 2560 Rev3
CPU Clock Speed 80 MHz 84 MHz 16 MHz
RAM 32 KB 96 kB 8 kB
operating voltage 3.3 V 3.3 V 5 V

Also, two less powerful microcontrollers could be used, one for each laser, to split tasks
between them, but their operation should be somehow synchronized, which can pose additional
difficulties.
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